Chapter 11, Section 11.4
Marginal Logistic Regression
Model
data obesity;
infile 'muscatine.dat';
input id gender baseage age
occasion y;
cage=age - 12;
cage2=cage*cage;
title1 Marginal Logistic Regression Model for Obesity;
title2 Muscatine Coronary Risk Factor Study;
proc genmod descending;
class id occasion;
model y=gender cage cage2
gender*cage gender*cage2 / dist=bin
link=logit
type3 wald;
contrast 'Age X Gender Interaction'
gender*cage 1, gender*cage2 1 /wald;
repeated subject=id /
withinsubject=occasion logor=fullclust;
run;
proc genmod descending;
class id occasion;
model y=gender cage cage2 /
dist=bin link=logit
type3 wald;
repeated subject=id /
withinsubject=occasion logor=fullclust;
run;
proc genmod descending;
class id occasion;
model y=gender cage cage2 /
dist=bin link=logit
type3 wald;
repeated subject=id /
withinsubject=occasion
logor=zrep( (1 2) 1 0,
(1 3) 0 1,
(2 3) 1 0);
run;
<Selected
Output>
Marginal Log-linear
Regression Model
data leprosy;
infile 'leprosy.dat';
input drug $ y1 y2;
id+1;
A=0;
B=0;
Antibiotic=0;
if drug='A' then A=1;
if drug='B' then B=1;
Antibiotic=A+B;
data leprosy;
set leprosy;
y=y1; time=0; output;
y=y2; time=1; output;
title1 Marginal Log-linear Regression Model for Leprosy Bacilli;
title2 Clinical Trial of Antibiotics for Leprosy;
proc genmod;
class id;
model y= time A*time B*time /
d=poisson link=log type3 wald;
contrast 'Drug x Time Interaction'
A*time 1, B*time 1 / wald;
repeated subject=id / modelse
type=un corrw;
run;
<Selected
Output>
proc genmod;
class id ;
model y= time Antibiotic*time / d=poisson link=log type3 wald;
repeated subject=id / modelse
type=un corrw;
run;
<Selected
Output>