Package ‘STAARpipeline’

November 5, 2021

Type Package

Title STAAR Pipeline for Analyzing Whole-Genome/Whole-Exome Sequencing Data

Version 0.9.6

Date 2021-11-05

Author Xihao Li [aut, cre], Zilin Li [aut, cre], Sheila M. Gaynor [aut], Han Chen [aut]

Maintainer Xihao Li <xihaoli@g.harvard.edu>, Zilin Li <li@hsph.harvard.edu>

Description An R package for performing STAAR pipeline in analyzing whole-genome/whole-exome sequencing data.

License GPL-3

Copyright See COPYRIGHTS for details.

Imports Rcpp, STAAR, SCANG, dplyr, SeqArray, SeqVarTools, GenomicFeatures, TxDb.Hsapiens.UCSC.hg38.knownGene, GMMAT, GENESIS, Matrix, methods

Encoding UTF-8

LazyData true

Depends R (>= 3.2.0)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.2

Suggests knitr, rmarkdown

VignetteBuilder knitr

R topics documented:

Dynamic_Window_SCANG .. 2
fit_nullmodel .. 4
genesis2staar_nullmodel .. 6
Gene_Centric_Coding ... 7
Gene_Centric_Coding_cond .. 8
Gene_Centric_Noncoding .. 10
Gene_Centric_Noncoding_cond .. 12
Individual_Analysis ... 13
Individual_Analysis_cond ... 15
LD_pruning ... 16
ncRNA ... 17
ncRNA_cond .. 18
Dynamic_Window_SCANG

Genetic region analysis of dynamic windows using SCANG-STAAR procedure

Description

The Dynamic_Window_SCANG function takes in chromosome, starting location, ending location, the object of opened annotated GDS file, and the object from fitting the null model to analyze the association between a quantitative/dichotomous phenotype and variants in a genetic region by using SCANG-STAAR procedure. For each dynamic window, the scan statistic of SCANG-STAAR-O is the set-based p-value of an omnibus test that aggregated p-values across different types of multiple annotation-weighted variant-set tests SKAT(1,1), SKAT(1,25), Burden(1,1) and Burden(1,25) using ACAT method; the scan statistic of SCANG-STAAR-S is the set-based p-value of STAAR-S, which is an omnibus test that aggregated p-values across multiple annotation-weighted variant-set tests SKAT(1,1) and SKAT(1,25) using ACAT method; the scan statistic of SCANG-STAAR-B is the set-based p-value of STAAR-B, which is an omnibus test that aggregated p-values across multiple annotation-weighted variant-set tests Burden(1,1) and Burden(1,25) using ACAT method.

Usage

Dynamic_Window_SCANG(
 chr, # chromosome.
 start_loc,
 end_loc,
 genofile,
 obj_nullmodel,
 Lmin = 40,
 Lmax = 300,
 steplength = 10,
 rare_maf_cutoff = 0.01,
 p_filter = 1e-08,
 f = 0,
 alpha = 0.1,
 QC_label = "annotation/filter",
 variant_type = c("SNV", "Indel", "variant"),
 geno_missing_imputation = c("mean", "minor"),
 Annotation_dir = "annotation/info/FunctionalAnnotation",
 Annotation_name_catalog,
 Use_annotation_weights = c(TRUE, FALSE),
 Annotation_name = NULL
)

Arguments

 chr chromosome.
Dynamic_Window_SCANG

start_loc
starting location (position) of the genetic region to be analyzed using SCANG-STAAR procedure.

end_loc
ending location (position) of the genetic region to be analyzed using SCANG-STAAR procedure.

genofile
an object of opened annotated GDS (aGDS) file.

obj_nullmodel
an object from fitting the null model, which is the output from fit_nullmodel function and transformed using the staar2scang_nullmodel function.

Lmin
minimum number of variants in searching windows (default = 40).

Lmax
maximum number of variants in searching windows (default = 300).

steplength
difference of number of variants in searching windows, that is, the number of variants in searching windows are Lmin, Lmin+steplength, Lmin+steplength,..., Lmax (default = 10).

rare_maf_cutoff
a cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

p_filter
a filtering threshold of screening method for SKAT in SCANG-STAAR. SKAT p-values are calculated for regions whose p-value is possibly smaller than the filtering threshold (default = 1e-8).

f
an overlap fraction, which controls for the overlapping proportion of of detected regions. For example, when f=0, the detected regions are non-overlapped with each other, and when f=1, we keep every susceptible region as detected regions (default = 0).

alpha
family-wise/genome-wide significance level (default = 0.1).

QC_label
channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type
variants included in the analysis. Choices include "variant", "SNV", or "Indel" (default = "SNV").

geno_missing_imputation
methode of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir
channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog
a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights
use annotations as weights or not (default = TRUE).

Annotation_name
annotations used in SCANG-STAAR.

Value

The function returns a list with the following members:

SCANG_O_res: A matrix that summarizes the significant region detected by SCANG-STAAR-O, including the negative log transformation of SCANG-STAAR-O p-value ("-logp"), chromosome ("chr"), start position ("start_pos"), end position ("end_pos"), family-wise/genome-wide error rate (GWER) and the number of variants ("SNV_num").

SCANG_O_top1: A vector of length 4 which summarizes the top 1 region detected by SCANG-STAAR-O, including the negative log transformation of SCANG-STAAR-O p-value ("-logp"),
chromosome ("chr"), start position ("start_pos"), end position ("end_pos"), family-wise/genome-wide error rate (GWER) and the number of variants ("SNV_num").

SCANG_O_emthr: A vector of Monte Carlo simulation sample for generating the empirical threshold. The 1-alpha quantile of this vector is the empirical threshold.

SCANG_S_res, SCANG_S_top1, SCANG_S_emthr: Analysis results using SCANG-STAAR-S. Details see SCANG-STAAR-O.

SCANG_B_res, SCANG_B_top1, SCANG_B_emthr: Analysis results using SCANG-STAAR-B. Details see SCANG-STAAR-O.

References

fit_nullmodel

Fitting generalized linear mixed model with known relationship matrices under the null hypothesis.

Description

The `fit_nullmodel` function is a wrapper of the `glmmkin` function from the `GMMAT` package that fits a regression model under the null hypothesis for related samples, which provides the preliminary step for subsequent variant-set tests in whole genome sequencing data analysis. See `glmmkin` for more details.

Usage

```r
fit_nullmodel(
  fixed,
  data = parent.frame(),
  kins,
  use_sparse = NULL,
  kins_cutoff = 0.022,
  id,
  random.slope = NULL,
  groups = NULL,
  family = binomial(link = "logit"),
  method = "REML",
  method.optim = "AI",
  maxiter = 500,
  tol = 1e-05,
  taumin = 1e-05,
  taumax = 1e+05,
```

Arguments

fixed an object of class formula (or one that can be coerced to that class): a symbolic description of the fixed effects model to be fitted.

data a data frame or list (or object coercible by as.data.frame to a data frame) containing the variables in the model.

kins a known positive semi-definite relationship matrix (e.g. kinship matrix in genetic association studies) or a list of known positive semi-definite relationship matrices. The rownames and colnames of these matrices must at least include all samples as specified in the id column of the data frame data. If kins is NULL, it will fit a generalized linear model for unrelated samples.

use_sparse a logical switch of whether the provided dense kins matrix should be transformed to a sparse matrix (default = NULL).

kins_cutoff the cutoff value for clustering samples to make the output matrix sparse block-diagonal (default = 0.022).

id a column in the data frame data, indicating the id of samples. When there are duplicates in id, the data is assumed to be longitudinal with repeated measures.

random.slope an optional column indicating the random slope for time effect used in a mixed effects model for longitudinal data. It must be included in the names of data. There must be duplicates in id and method.optim must be "AI" (default = NULL).

groups an optional categorical variable indicating the groups used in a heteroscedastic linear mixed model (allowing residual variances in different groups to be different). This variable must be included in the names of data, and family must be "gaussian" and method.optim must be "AI" (default = NULL).

family a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions).

method method of fitting the generalized linear mixed model. Either "REML" or "ML" (default = "REML").

method.optim optimization method of fitting the generalized linear mixed model. Either "AI", "Brent" or "Nelder-Mead" (default = "AI").

maxiter a positive integer specifying the maximum number of iterations when fitting the generalized linear mixed model (default = 500).

tol a positive number specifying tolerance, the difference threshold for parameter estimates below which iterations should be stopped (default = 1e-5).

taumin the lower bound of search space for the variance component parameter τ (default = 1e-5), used when method.optim = "Brent". See Details.

taumax the upper bound of search space for the variance component parameter τ (default = 1e5), used when method.optim = "Brent". See Details.

tauregion the number of search intervals for the REML or ML estimate of the variance component parameter τ (default = 10), used when method.optim = "Brent". See Details.
verbose a logical switch for printing detailed information (parameter estimates in each iteration) for testing and debugging purpose (default = FALSE).

... additional arguments that could be passed to glm.

Value

The function returns an object of the model fit from glmkin (obj_nullmodel) and whether the kins matrix is sparse when fitting the null model. See glmkin for more details.

References

Chen, H., et al. (2019). Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies. The American Journal of Human Genetics, 104(2), 260-274. (pub)

Gene_Centric_Coding
Gene-centric analysis of coding functional categories using STAAR procedure

Description

The `Gene_Centric_Coding` function takes in chromosome, gene name, functional category, the object of opened annotated GDS file, and the object from fitting the null model to analyze the association between a quantitative/dichotomous phenotype and coding functional categories of a gene by using STAAR procedure. For each coding functional category, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method.

Usage

```r
Gene_Centric_Coding(
  chr,  
gene_name,  
category = c("all_categories", "plof", "plof_ds", "missense", "disruptive_missense", "synonymous"),  
genofile,  
obj_nullmodel,  
rare_maf_cutoff = 0.01,  
rv_num_cutoff = 2,  
QC_label = "annotation/filter",  
variant_type = c("SNV", "Indel", "variant"),  
geno_missing_imputation = c("mean", "minor"),  
Annotation_dir = "annotation/info/FunctionalAnnotation",  
Annotation_name_catalog,  
Use_annotation_weights = c(TRUE, FALSE),  
Annotation_name = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chr</code></td>
<td>chromosome.</td>
</tr>
<tr>
<td><code>gene_name</code></td>
<td>name of the gene to be analyzed using STAAR procedure.</td>
</tr>
<tr>
<td><code>category</code></td>
<td>the coding functional category to be analyzed using STAAR procedure. Choices include <code>all_categories</code>, <code>plof</code>, <code>plof_ds</code>, <code>missense</code>, <code>disruptive_missense</code>, <code>synonymous</code> (default = <code>all_categories</code>).</td>
</tr>
<tr>
<td><code>genofile</code></td>
<td>an object of opened annotated GDS (aGDS) file.</td>
</tr>
<tr>
<td><code>obj_nullmodel</code></td>
<td>an object from fitting the null model, which is either the output from <code>fit_nullmodel</code> function, or the output from <code>fitNullModel</code> function in the GENESIS package and transformed using the <code>genesis2staar_nullmodel</code> function.</td>
</tr>
<tr>
<td><code>rare_maf_cutoff</code></td>
<td>the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).</td>
</tr>
<tr>
<td><code>rv_num_cutoff</code></td>
<td>the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).</td>
</tr>
</tbody>
</table>
Gene_Centric_Coding_cond

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "SNV").

geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights use annotations as weights or not (default = TRUE).

Annotation_name annotations used in STAAR.

Value

a list of data frames containing the STAAR p-values (including STAAR-O) corresponding to the coding functional category of the given gene.

References

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 52(9), 969-983. (pub)

Gene_Centric_Coding_cond

Gene-centric conditional analysis of coding functional categories using STAAR procedure

Description

The Gene_Centric_Coding_cond function takes in chromosome, gene name, functional category, the object of opened annotated GDS file, the object from fitting the null model, and the set of known variants to be adjusted for in conditional analysis to analyze the conditional association between a quantitative/dichotomous phenotype and coding functional categories of a gene by using STAAR procedure. For each coding functional category, the conditional STAAR-O p-value is a p-value from an omnibus test that aggregated conditional SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with conditional p-values of each test weighted by each annotation using Cauchy method.

Usage

Gene_Centric_Coding_cond(
 chr,
 gene_name,
 category = c("plof", "plof_ds", "missense", "disruptive_missense", "synonymous"),
 genofile,
 obj_nullmodel,
known_loci,
rare_maf_cutoff = 0.01,
rv_num_cutoff = 2,
method_cond = c("optimal", "naive"),
QC_label = "annotation/filter",
variant_type = c("SNV", "Indel", "variant"),
geno_missing_imputation = c("mean", "minor"),
Annotation_dir = "annotation/info/FunctionalAnnotation",
Annotation_name_catalog,
Use_annotation_weights = c(TRUE, FALSE),
Annotation_name = NULL)
)

Arguments

chr chromosome.
gene_name name of the gene to be analyzed using STAAR procedure.
category the coding functional category to be analyzed using STAAR procedure. Choices include plof, plof_ds, missense, disruptive_missense, synonymous (default = plof).
genofile an object of opened annotated GDS (aGDS) file.
obj_nullmodel an object from fitting the null model, which is either the output from fit_nullmodel function, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function.
known_loci the data frame of variants to be adjusted for in conditional analysis and should contain 4 columns in the following order: chromosome (CHR), position (POS), reference allele (REF), and alternative allele (ALT).
rare_maf_cutoff the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).
rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).
method_cond a character value indicating the method for conditional analysis. optimal refers to regressing residuals from the null model on known_loci as well as all co-variates used in fitting the null model (fully adjusted) and taking the residuals; naive refers to regressing residuals from the null model on known_loci and taking the residuals (default = optimal).
QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").
variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "SNV").
geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").
Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").
Annotation_name_catalog a data frame containing the name and the corresponding channel name in the aGDS file.
Use_annotation_weights use annotations as weights or not (default = TRUE).
Annotation_name annotations used in STAAR.
Value

A data frame containing the conditional STAAR p-values (including STAAR-O) corresponding to each coding functional category of the given gene.

References

Gene_Centric_Noncoding

Gene-centric analysis of noncoding functional categories using STAAR procedure for whole-genome sequencing data

Description

The `Gene_Centric_Noncoding` function takes in chromosome, gene name, functional category, the object of opened annotated GDS file, and the object from fitting the null model to analyze the association between a quantitative/dichotomous phenotype and noncoding functional categories of a gene by using STAAR procedure. For each noncoding functional category, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method.

Usage

```r
Gene_Centric_Noncoding(  chr,  gene_name,  category = c("all_categories", "downstream", "upstream", "UTR", "promoter_CAGE", "promoter_DHS", "enhancer_CAGE", "enhancer_DHS"),  genofile,  obj_nullmodel,  rare_maf_cutoff = 0.01,  rv_num_cutoff = 2,  QC_label = "annotation/filter",  variant_type = c("SNV", "Indel", "variant"),  geno_missing_imputation = c("mean", "minor"),  Annotation_dir = "annotation/info/FunctionalAnnotation",  Annotation_name_catalog,  Use_annotation_weights = c(TRUE, FALSE),  Annotation_name = NULL )
```
Arguments

chr chromosome.
gene_name name of the gene to be analyzed using STAAR procedure.
category the noncoding functional category to be analyzed using STAAR procedure. Choices
class include all_categories, downstream, upstream, UTR, promoter_CAGE, promoter_DHS,
enhancer_CAGE, enhancer_DHS (default = all_categories).
genofile an object of opened annotated GDS (aGDS) file.
obj_nullmodel an object from fitting the null model, which is either the output from fit_nullmodel
function, or the output from fitNullModel function in the GENESIS package
and transformed using the genesis2staar_nullmodel function.
rare_maf_cutoff the cutoff of maximum minor allele frequency in defining rare variants (default
= 0.01).
v_num_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (de-
default = 2).
QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").
variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel"
(default = "SNV").
geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default =
"mean").
Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").
Annotation_name_catalog a data frame containing the name and the corresponding channel name in the
aGDS file.
Use_annotation_weights use annotations as weights or not (default = TRUE).
Annotation_name annotations used in STAAR.

Value

a list of data frames containing the STAAR p-values (including STAAR-O) corresponding to each
noncoding functional category of the given gene.

References

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 52(9), 969-983. (pub)
Gene_Centric_Noncoding_cond

Gene-centric conditional analysis of noncoding functional categories using STAAR procedure for whole-genome sequencing data

Description

The Gene_Centric_Noncoding_cond function takes in chromosome, gene name, functional category, the object of opened annotated GDS file, the object from fitting the null model, and the set of known variants to be adjusted for in conditional analysis to analyze the conditional association between a quantitative/dichotomous phenotype and noncoding functional categories of a gene by using STAAR procedure. For each noncoding functional category, the conditional STAAR-O p-value is a p-value from an omnibus test that aggregated conditional SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with conditional p-values of each test weighted by each annotation using Cauchy method.

Usage

Gene_Centric_Noncoding_cond(
 chr, gene_name, category = c("downstream", "upstream", "UTR", "promoter_CAGE", "promoter_DHS", "enhancer_CAGE", "enhancer_DHS"), genofile, obj_nullmodel, known_loci, rare_maf_cutoff = 0.01, rv_num_cutoff = 2, method_cond = c("optimal", "naive"), QC_label = "annotation/filter", variant_type = c("SNV", "Indel", "variant"), geno_missing_imputation = c("mean", "minor"), Annotation_dir = "annotation/info/FunctionalAnnotation", Annotation_name_catalog, Use_annotation_weights = c(TRUE, FALSE), Annotation_name = NULL)
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr</td>
<td>chromosome.</td>
</tr>
<tr>
<td>gene_name</td>
<td>name of the gene to be analyzed using STAAR procedure.</td>
</tr>
<tr>
<td>category</td>
<td>the noncoding functional category to be analyzed using STAAR procedure. Choices include downstream, upstream, UTR, promoter_CAGE, promoter_DHS, enhancer_CAGE, enhancer_DHS (default = downstream).</td>
</tr>
<tr>
<td>genofile</td>
<td>an object of opened annotated GDS (aGDS) file.</td>
</tr>
<tr>
<td>obj_nullmodel</td>
<td>an object from fitting the null model, which is either the output from fit_nullmodel function, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function.</td>
</tr>
</tbody>
</table>
known_loci the data frame of variants to be adjusted for in conditional analysis and should contain 4 columns in the following order: chromosome (CHR), position (POS), reference allele (REF), and alternative allele (ALT).

rare_maf_cutoff the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).

method_cond a character value indicating the method for conditional analysis. optimal refers to regressing residuals from the null model on known_loci as well as all covariates used in fitting the null model (fully adjusted) and taking the residuals; naive refers to regressing residuals from the null model on known_loci and taking the residuals (default = optimal).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "SNV").

geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights use annotations as weights or not (default = TRUE).

Annotation_name annotations used in STAAR.

Value a data frame containing the conditional STAAR p-values (including STAAR-O) corresponding to the noncoding functional category of the given gene.

References

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 52(9), 969-983. (pub)

Description

The `Individual_Analysis` function takes in chromosome, starting location, ending location, the object of opened annotated GDS file, and the object from fitting the null model to analyze the association between a quantitative/dichotomous phenotype and each individual variant in a genetic region by using score test.
Individual_Analysis

Usage

Individual_Analysis(
 chr,
 start_loc,
 end_loc,
 genofile,
 obj_nullmodel,
 mac_cutoff = 20,
 subset_variants_num = 5000,
 QC_label = "annotation/filter",
 variant_type = c("variant", "SNV", "Indel"),
 geno_missing_imputation = c("mean", "minor")
)

Arguments

chr chromosome.
start_loc starting location (position) of the genetic region for each individual variant to be analyzed using score test.
end_loc ending location (position) of the genetic region for each individual variant to be analyzed using score test.
genofile an object of opened annotated GDS (aGDS) file.
obj_nullmodel an object from fitting the null model, which is either the output from fit_nullmodel function, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function.
mac_cutoff the cutoff of minimum minor allele count in defining individual variants (default = 20).
subset_variants_num the number of variants to run per subset for each time (default = 5e3).
QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").
variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "variant").
geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Value

a data frame containing the score test p-value and effect size for each individual variant in the given genetic region.

References

Description

The `Individual_Analysis_cond` function takes in chromosome, starting location, ending location, the object of opened annotated GDS file, the object from fitting the null model, and the set of known variants to be adjusted for in conditional analysis to analyze the conditional association between a quantitative/dichotomous phenotype and each significant individual variant by using score test.

Usage

```r
Individual_Analysis_cond(
  chr,  
  individual_results,  
  genofile,  
  obj_nullmodel,  
  known_loci,  
  method_cond = c("optimal", "naive"),  
  QC_label = "annotation/filter",  
  variant_type = c("variant", "SNV", "Indel"),  
  geno_missing_imputation = c("mean", "minor")
)
```

Arguments

- `chr`: chromosome.
- `individual_results`: the data frame of the significant individual variants for conditional analysis using score test.
- `genofile`: an object of opened annotated GDS (aGDS) file.
- `obj_nullmodel`: an object from fitting the null model, which is either the output from `fit_nullmodel` function, or the output from `fitNullModel` function in the GENESIS package and transformed using the `genesis2staar_nullmodel` function.
- `known_loci`: the data frame of variants to be adjusted for in conditional analysis and should contain 4 columns in the following order: chromosome (CHR), position (POS), reference allele (REF), and alternative allele (ALT).
- `method_cond`: a character value indicating the method for conditional analysis. `optimal` refers to regressing residuals from the null model on `known_loci` as well as all covariates used in fitting the null model (fully adjusted) and taking the residuals; `naive` refers to regressing residuals from the null model on `known_loci` and taking the residuals (default = `optimal`).
- `QC_label`: channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").
- `variant_type`: variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "variant").
- `geno_missing_imputation`: method of handling missing genotypes. Either "mean" or "minor" (default = "mean").
Value

A data frame containing the conditional score test p-value and effect size for each significant individual variant in the given set.

References

LD_pruning

Linkage disequilibrium (LD) pruning procedure

Description

The LD_pruning function takes in chromosome, the object of opened annotated GDS file, the object from fitting the null model, and a given list of variants to perform LD pruning among these variants in sequential conditional analysis by using score test.

Usage

```r
LD_pruning(
  chr, 
  genofile, 
  obj_nullmodel, 
  variants_list, 
  maf_cutoff = 0.01, 
  cond_p_thresh = 1e-04, 
  method_cond = c("optimal", "naive"), 
  QC_label = "annotation/filter", 
  variant_type = c("variant", "SNV", "Indel"), 
  geno_missing_imputation = c("mean", "minor")
)
```

Arguments

- `chr`: chromosome.
- `genofile`: an object of opened annotated GDS (aGDS) file.
- `obj_nullmodel`: an object from fitting the null model, which is either the output from `fit_nullmodel` function, or the output from `fitNullModel` function in the GENESIS package and transformed using the `genesis2staar_nullmodel` function.
- `variants_list`: the data frame of variants to be LD-pruned in sequential conditional analysis and should contain 4 columns in the following order: chromosome (CHR), position (POS), reference allele (REF), and alternative allele (ALT).
- `maf_cutoff`: the cutoff of minimum minor allele frequency in defining individual variants to be LD-pruned (default = 0.01).
cond_p_thresh: the cutoff of maximum conditional p-value allowed for variants to be kept in the LD-pruned list of variants (default = 1e-04).

method_cond: a character value indicating the method for conditional analysis. optimal refers to regressing residuals from the null model on known_loci as well as all co-variates used in fitting the null model (fully adjusted) and taking the residuals; naive refers to regressing residuals from the null model on known_loci and taking the residuals (default = optimal).

QC_label: channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type: variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "variant").

genome_missing_imputation: method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Value: a data frame containing the list of LD-pruned variants in the given chromosome.

def ncRNA(chr, gene_name, genofile, obj_nullmodel, rare_maf_cutoff = 0.01, rv_num_cutoff = 2, QC_label = "annotation/filter", variant_type = c("SNV", "Indel", "variant"), genome_missing_imputation = c("mean", "minor"), Annotation_dir = "annotation/info/FunctionalAnnotation", Use_annotation_weights = c(TRUE, FALSE), Annotation_name = NULL)

Description:
The ncRNA function takes in chromosome, gene name, the object of opened annotated GDS file, and the object from fitting the null model to analyze the association between a quantitative/dichotomous phenotype and the exonic and splicing category of an ncRNA gene by using STAAR procedure. For each ncRNA category, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method.

Usage:
ncRNA(
 chr,
 gene_name,
 genofile,
 obj_nullmodel,
 rare_maf_cutoff = 0.01,
 rv_num_cutoff = 2,
 QC_label = "annotation/filter",
 variant_type = c("SNV", "Indel", "variant"),
 genome_missing_imputation = c("mean", "minor"),
 Annotation_dir = "annotation/info/FunctionalAnnotation",
 Use_annotation_weights = c(TRUE, FALSE),
 Annotation_name = NULL
)
Arguments

chr chromosome.

gene_name name of the ncRNA gene to be analyzed using STAAR procedure.

genofile an object of opened annotated GDS (aGDS) file.

obj_nullmodel an object from fitting the null model, which is either the output from \texttt{fit_nullmodel} function, or the output from \texttt{fitNullModel} function in the GENESIS package and transformed using the \texttt{genesis2staar_nullmodel} function.

rare_maf_cutoff the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).

rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).

QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "SNV").

geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog a data frame containing the name and the corresponding channel name in the aGDS file.

Use_annotation_weights use annotations as weights or not (default = TRUE).

Annotation_name annotations used in STAAR.

Value

a data frame of STAAR p-values (including STAAR-O) corresponding to the exonic and splicing category of the given ncRNA gene.

References

Description

The `ncRNA_cond` function takes in chromosome, gene name, the object of opened annotated GDS file, the object from fitting the null model, and the set of known variants to be adjusted for in conditional analysis to analyze the conditional association between a quantitative/dichotomous phenotype and the noncoding RNA (ncRNA) category of an ncRNA gene by using STAAR procedure. For each ncRNA category, the conditional STAAR-O p-value is a p-value from an omnibus test that aggregated conditional SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with conditional p-values of each test weighted by each annotation using Cauchy method.

Usage

```r
ncRNA_cond(
  chr, 
  gene_name, 
  genofile, 
  obj_nullmodel, 
  known_loci, 
  rare_maf_cutoff = 0.01, 
  rv_num_cutoff = 2, 
  method_cond = c("optimal", "naive"), 
  QC_label = "annotation/filter", 
  variant_type = c("SNV", "Indel", "variant"), 
  geno_missing_imputation = c("mean", "minor"), 
  Annotation_dir = "annotation/info/FunctionalAnnotation", 
  Annotation_name_catalog, 
  Use_annotation_weights = c(TRUE, FALSE), 
  Annotation_name = NULL 
)
```

Arguments

- `chr` : chromosome.
- `gene_name` : name of the ncRNA gene to be analyzed using STAAR procedure.
- `genofile` : an object of opened annotated GDS (aGDS) file.
- `obj_nullmodel` : an object from fitting the null model, which is either the output from `fit_nullmodel` function, or the output from `fitNullModel` function in the GENESIS package and transformed using the `genesis2staar_nullmodel` function.
- `known_loci` : the data frame of variants to be adjusted for in conditional analysis and should contain 4 columns in the following order: chromosome (chr), position (pos), reference allele (ref), and alternative allele (alt).
- `rare_maf_cutoff` : the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).
- `rv_num_cutoff` : the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).
- `method_cond` : a character value indicating the method for conditional analysis. `optimal` refers to regressing residuals from the null model on `known_loci` as well as all covariates used in fitting the null model (fully adjusted) and taking the residuals; `naive` refers to regressing residuals from the null model on `known_loci` and taking the residuals (default = `optimal`).
Sliding_Window

The Sliding_Window function takes in chromosome, starting location, ending location, sliding window length, the object of opened annotated GDS file, and the object from fitting the null model to analyze the association between a quantitative/dichotomous phenotype and variants in a genetic region by using STAAR procedure. For each sliding window, the STAAR-O p-value is a p-value from an omnibus test that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with p-values of each test weighted by each annotation using Cauchy method.

Usage

```r
Sliding_Window(
  chr,  # chromosome
  start_loc,  # starting location
  end_loc,  # ending location
  sliding_window_length = 2000,  # sliding window length
  type = c("single", "multiple"),  # type of analysis
  genofile  # object of opened annotated GDS file
)
```
Sliding_Window

 obj_nullmodel,
 rare_maf_cutoff = 0.01,
 rv_num_cutoff = 2,
 QC_label = "annotation/filter",
 variant_type = c("SNV", "Indel", "variant"),
 geno_missing_imputation = c("mean", "minor"),
 Annotation_dir = "annotation/info/FunctionalAnnotation",
 Annotation_name_catalog,
 Use_annotation_weights = c(TRUE, FALSE),
 Annotation_name = NULL
)

Arguments

 chr chromosome.
 start_loc starting location (position) of the genetic region to be analyzed using STAAR procedure.
 end_loc ending location (position) of the genetic region to be analyzed using STAAR procedure.
 sliding_window_length the (fixed) length of the sliding window to be analyzed using STAAR procedure.
 type the type of sliding window to be analyzed using STAAR procedure. Choices include single, multiple (default = single).
 genofile an object of opened annotated GDS (aGDS) file.
 obj_nullmodel an object from fitting the null model, which is either the output from fit_nullmodel function, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function.
 rare_maf_cutoff the cutoff of maximum minor allele frequency in defining rare variants (default = 0.01).
 rv_num_cutoff the cutoff of minimum number of variants of analyzing a given variant-set (default = 2).
 QC_label channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").
 variant_type variants include in the analysis. Choices include "variant", "SNV", or "Indel" (default = "SNV").
 geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").
 Annotation_dir channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").
 Annotation_name_catalog a data frame containing the name and the corresponding channel name in the aGDS file.
 Use_annotation_weights use annotations as weights or not (default = TRUE).
 Annotation_name annotations used in STAAR.

Value

 a data frame containing the STAAR p-values (including STAAR-O) corresponding to each sliding window in the given genetic region.
References

Sliding_Window_cond

Genetic region conditional analysis of sliding windows using STAAR procedure

Description

The `Sliding_Window_cond` function takes in chromosome, starting location, ending location, the object of opened annotated GDS file, the object from fitting the null model, and the set of known variants to be adjusted for in conditional analysis to analyze the conditional association between a quantitative/dichotomous phenotype and variants in a genetic region by using STAAR procedure. For each sliding window, the conditional STAAR-O p-value is a p-value from an omnibus test that aggregated conditional SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together with conditional p-values of each test weighted by each annotation using Cauchy method.

Usage

```r
Sliding_Window_cond(
  chr,
  start_loc,
  end_loc,
  genofile,
  obj_nullmodel,
  known_loci,
  rare_maf_cutoff = 0.01,
  rv_num_cutoff = 2,
  method_cond = c("optimal", "naive"),
  QC_label = "annotation/filter",
  variant_type = c("SNV", "Indel", "variant"),
  geno_missing_imputation = c("mean", "minor"),
  Annotation_dir = "annotation/info/FunctionalAnnotation",
  Annotation_name_catalog,
  Use_annotation_weights = c(TRUE, FALSE),
  Annotation_name = NULL
)
```

Arguments

- `chr`: chromosome.
- `start_loc`: starting location (position) of the sliding window to be analyzed using STAAR procedure.
- `end_loc`: ending location (position) of the sliding window to be analyzed using STAAR procedure.
- `genofile`: an object of opened annotated GDS (aGDS) file.
obj_nullmodel
an object from fitting the null model, which is either the output from `fit_nullmodel`
function, or the output from `fitNullModel` function in the GENESIS package
and transformed using the `genesis2staar_nullmodel` function.

known_loci
the data frame of variants to be adjusted for in conditional analysis and should
contain 4 columns in the following order: chromosome (CHR), position (POS),
reference allele (REF), and alternative allele (ALT).

rare_maf_cutoff
the cutoff of maximum minor allele frequency in defining rare variants (default
= 0.01).

rv_num_cutoff
the cutoff of minimum number of variants of analyzing a given variant-set (de-
default = 2).

method_cond
a character value indicating the method for conditional analysis. optimal refers
to regressing residuals from the null model on known_loci as well as all co-
variates used in fitting the null model (fully adjusted) and taking the residuals;
naive refers to regressing residuals from the null model on known_loci and
taking the residuals (default = optimal).

QC_label
channel name of the QC label in the GDS/aGDS file (default = "annotation/filter").

variant_type
variants include in the analysis. Choices include "variant", "SNV", or "Indel"
(default = "SNV").

geno_missing_imputation
method of handling missing genotypes. Either "mean" or "minor" (default = "mean").

Annotation_dir
channel name of the annotations in the aGDS file (default = "annotation/info/FunctionalAnnotation").

Annotation_name_catalog
a data frame containing the name and the corresponding channel name in the
aGDS file.

Use_annotation_weights
use annotations as weights or not (default = TRUE).

Annotation_name
annotations used in STAAR.

Value
a data frame containing the conditional STAAR p-values (including STAAR-O) corresponding to
the sliding window in the given genetic region.

References
Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations em-
powers rare variant association analysis of large whole-genome sequencing studies at scale. Nature
Genetics, 52(9), 969-983. (pub)

association studies. Genetic Epidemiology, 43(3), 263-275. (pub)
staar2scang_nullmodel Transforming the null model object fitted using STAAR to the null model object to be used for SCANG-STAAR

Description

The staar2scang_nullmodel function takes in the object from fitting the null model and transforms it to the object from fitting the null model to be used for SCANG-STAAR procedure.

Usage

staar2scang_nullmodel(obj_nullmodel)

Arguments

obj_nullmodel an object from fitting the null model, which is either the output from fit_nullmodel function, or the output from fitNullModel function in the GENESIS package and transformed using the genesis2staar_nullmodel function.

Value

an object from fitting the null model for related samples to be used for SCANG-STAAR procedure, which is the output from fit_null_glmkin_SCANG function for related samples in the SCANG package.

References

Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 52(9), 969-983. (pub)

Index

Dynamic_Window_SCANG, 2
family, 5
fit_nullmodel, 3, 4, 6, 7, 9, 11, 12, 15, 16,
 18, 19, 21, 23, 24
formula, 5

Gene_Centric_Coding, 7
Gene_Centric_Coding-cond, 8
Gene_Centric_Noncoding, 10
Gene_Centric_Noncoding-cond, 12
genesis2staar-nullmodel, 6, 7, 9, 11, 12,
 15, 16, 18, 19, 21, 23
glm, 6
glmmkin, 6

Individual_Analysis, 13
Individual_Analysis-cond, 15

LD_pruning, 16

ncRNA, 17
ncRNA-cond, 18

Sliding_Window, 20
Sliding_Window-cond, 22
staar2scang-nullmodel, 3, 24