Package ‘SCANG’

August 21, 2019

Type Package

Title Scan Procedure for Whole Genome Sequencing Study

Version 1.0.0

Date 2019-08-14

Author Zilin Li [aut, cre], XiHao Li [aut, cre], Han Chen [aut]

Maintainer Zilin Li <li@hsph.harvard.edu>, Xihao Li <xihaoLi@g.harvard.edu>

Description R package for performing SCANG procedure in whole genome sequencing studies.

License GPL-3

Copyright See COPYRIGHTS for details.

Imports Rcpp, GMMAT, Matrix, GENESIS, kinship2

Encoding UTF-8

LazyData true

Depends R (>= 3.0.0)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

R topics documented:

fit_null_glm	2
fit_null_glmmkin	2
SCANG	4

Index 6
fit_null_glm

Fit generalized linear model under the null hypothesis for unrelated samples.

Description

The fit_null_glm function is a wrapper of the `glm` function from the `stats` package that fits a regression model under the null hypothesis for unrelated samples, which provides the preliminary step for subsequent variant-set tests in whole genome sequencing data analysis.

Usage

```r
fit_null_glm(fixed, data, family = binomial(link = "logit"),
             times = 2000, ...)  
```

Arguments

- **fixed**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the fixed effects model to be fitted.
- **data**: a data frame or list (or object coercible by `as.data.frame`) containing the variables in the model.
- **family**: a description of the error distribution and link function to be used in the model. This can be either "gaussian" for continuous phenotype or "binomial" for binary phenotype.
- **times**: a number of pseudo-residuals (default = 2000).
- **...**: additional arguments that could be passed to `glm`.

Value

The function returns an object of the model fit from `glm` (`obj_nullmodel`), with an additional element indicating the samples are unrelated (`obj_nullmodel$relatedness = FALSE`). See `glm` for more details.

fit_null_glmmkin

Fitting generalized linear mixed model with known relationship matrices under the null hypothesis for related samples.

Description

The fit_null_glmmkin function is a wrapper of the `glmmkin` function from the `GMMAT` package that fits a regression model under the null hypothesis for related samples, which provides the preliminary step for subsequent variant-set tests in whole genome sequencing data analysis. More details see `glmmkin`.
Usage

```r
fit_null_glmmkin(fixed, data = parent.frame(), kins, use_sparse = NULL, kins_cutoff = 0.022, id, random.slope = NULL, groups = NULL, family = binomial(link = "logit"), method = "REML", method.optim = "AI", maxiter = 500, tol = 1e-05, taumin = 1e-05, taumax = 1e+05, tauregion = 10, times = 2000, verbose = FALSE, ...)
```

Arguments

- **fixed**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the fixed effects model to be fitted.
- **data**: a data frame or list (or object coercible by `as.data.frame` to a data frame) containing the variables in the model.
- **kins**: a known positive semi-definite relationship matrix (e.g. kinship matrix in genetic association studies) or a list of known positive semi-definite relationship matrices. The rownames and colnames of these matrices must at least include all samples as specified in the `id` column of the data frame `data`.
- **use_sparse**: a logical switch of whether the provided dense `kins` matrix should be transformed to a sparse matrix (default = NULL).
- **kins_cutoff**: the cutoff of setting all entries with smaller values to 0 in `kins` matrix (default = 0.022).
- **id**: a column in the data frame `data`, indicating the id of samples. When there are duplicates in `id`, the data is assumed to be longitudinal with repeated measures.
- **random.slope**: an optional column indicating the random slope for time effect used in a mixed effects model for longitudinal data. It must be included in the names of `data`. There must be duplicates in `id` and `method.optim` must be "AI" (default = NULL).
- **groups**: an optional categorical variable indicating the groups used in a heteroscedastic linear mixed model (allowing residual variances in different groups to be different). This variable must be included in the names of `data`, and `family` must be "gaussian" and `method.optim` must be "AI" (default = NULL).
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions).
- **method**: method of fitting the generalized linear mixed model. Either "REML" or "ML" (default = "REML").
- **method.optim**: optimization method of fitting the generalized linear mixed model. Either "AI", "Brent" or "Nelder-Mead" (default = "AI").
- **maxiter**: a positive integer specifying the maximum number of iterations when fitting the generalized linear mixed model (default = 500).
- **tol**: a positive number specifying tolerance, the difference threshold for parameter estimates below which iterations should be stopped (default = 1e-5).
- **taumin**: the lower bound of search space for the variance component parameter \(\tau \) (default = 1e-5), used when `method.optim = "Brent"`. See Details.
- **taumax**: the upper bound of search space for the variance component parameter \(\tau \) (default = 1e5), used when `method.optim = "Brent"`. See Details.
tauregion: the number of search intervals for the REML or ML estimate of the variance component parameter τ (default = 10), used when method.optim = “Brent”. See Details.

times: a number of pseudo-residuals (default = 2000).

verbose: a logical switch for printing detailed information (parameter estimates in each iteration) for testing and debugging purpose (default = FALSE).

... additional arguments that could be passed to glm.

Value

The function returns an object of the model fit from glmmkin (obj_nullmodel), with additional elements indicating the samples are related (obj_nullmodel$relatedness = TRUE), whether the kins matrix is sparse when fitting the null model, and the matrix of pseudo residuals. See glmmkin for more details.

References

Description

The SCANG function takes in genotype and the object from fitting the null model and detect the association between a quantitative/dichotomous phenotype and a variant-set in a sequence by using SCANG procedure, including SCANG-O, SCANG-B and SCANG-S. For each region, the scan statistic of SCANG-O is the set-based p-value of an omnibus test that aggregated SKAT(1,1), SKAT(1,25), Burden(1,1) and Burden(1,25) using Cauchy method; the scan statistic of SCANG-S is the set-based p-value of an omnibus test that aggregated SKAT(1,1) and SKAT(1,25) using Cauchy method; the scan statistic of SCANG-B is the set-based p-value of an omnibus test that aggregated Burden(1,1) and Burden(1,25) using Cauchy method.

Usage

SCANG(genotype, obj_nullmodel, Lmin, Lmax, rare_maf_cutoff = 0.05, steplength = 5, alpha = 0.05, filter = 1e-04, f = 0.5)
Arguments

- **genotype**: an n*p genotype matrix (dosage matrix) of the target sequence, where n is the sample size and p is the number of variants.
- **obj_nullmodel**: an object from fitting the null model, which is the output from either `fit_null_glm` function for unrelated samples or `fit_null_glmmkin` function for related samples. Note that `fit_null_glmmkin` is a wrapper of `glmmkin` function from the GMMAT package.
- **Lmin**: minimum number of variants in searching windows.
- **Lmax**: maximum number of variants in searching windows.
- **rare_maf_cutoff**: the cutoff of maximum minor allele frequency in defining rare variants. (Default is 0.05).
- **steplength**: difference of number of variants in searching windows, that is, the number of variants in searching windows are Lmin, Lmin+steplength, Lmin+steplength,...,Lmax. (Default is 5).
- **alpha**: family-wise/genome-wide significance level. (Default is 0.05).
- **filter**: a filtering threshold of screening method for SKAT. SKAT p-values are calculated for regions whose p-value is possibly smaller than the filtering threshold. (Default is 1e-4).
- **f**: an overlap fraction, which controls for the overlapping proportion of detected regions. For example, when f=0, the detected regions are non-overlapped with each other, and when f=1, we keep every susceptible region as detected regions. (Default is 0.5.)

Value

The function returns a list with the following members:

- **SCANG_O_res**: A matrix that summarized the significant region detected by SCANG-O. The first column is the -log(p-value) of the detected region. The next two columns are the location of the detected region (in sense of variants order). The last column is the family-wise/genome-wide error rate of the detected region. The result (0,0,0,1) means there is no significant region.
- **SCANG_O_top1**: A vector of length 4 which summarized the top 1 region detected by SCANG-O. The first element is the -log(p-value) of the region. The next two elements are the location of the detected region (in sense of variants order). The last element is the family-wise/genome-wide p-value.
- **SCANG_O_thres**: Empirical threshold of SCANG-O for controlling the family-wise type I error at alpha level.
- **SCANG_O_thres_boot**: A vector of Monte Carlo simulation sample for generating the empirical threshold. The 1-alpha quantile of this vector is the empirical threshold.
- **SCANG_S_res, SCANG_S_thres, SCANG_S_top1, SCANG_S_thres_boot**: Analysis results using SCANG-S. Details see SCANG-O.
- **SCANG_B_res, SCANG_B_thres, SCANG_B_top1, SCANG_B_thres_boot**: Analysis results using SCANG-B. Details see SCANG-O.
Index

as.data.frame, 2, 3
family, 2, 3
fit_null_glm, 2, 5
fit_null_glmmkin, 2, 5
formula, 2, 3

glm, 2, 4
glmmkin, 2, 4, 5
GMMAT, 2, 5

SCANG, 4
stats, 2