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Abstract: In this tutorial, we provide a broad introduction to the topic of interaction between the effects
of exposures. We discuss interaction on both additive and multiplicative scales using risks, and we
discuss their relation to statistical models (e.g. linear, log-linear, and logistic models). We discuss and
evaluate arguments that have been made for using additive or multiplicative scales to assess interac-
tion. We further discuss approaches to presenting interaction analyses, different mechanistic forms of
interaction, when interaction is robust to unmeasured confounding, interaction for continuous out-
comes, qualitative or “crossover” interactions, methods for attributing effects to interactions, case-only
estimators of interaction, and power and sample size calculations for additive and multiplicative
interaction.
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It is not uncommon for the effect of one exposure on an outcome to depend in some way on the presence or
absence of another exposure. When this is the case, we say that there is interaction between the two
exposures. Recent years have seen increasing interest in interaction between genetic and environmental
exposures, but interaction can also occur between two (or more) environmental exposures, or two different
genetic exposures, or with various behavioral exposures. The processes giving rise to illness, health, and a
variety of other outcomes are often inherently complex. Interaction between exposures is one manifestation
of this complexity.

In this paper, we provide a tutorial on interaction. Many papers and book chapters discussing
interaction are restricted to a fairly narrow set of issues. In this tutorial, we hope to provide a
more comprehensive overview of issues related to interaction, primarily from the perspective of
what has been written on the topic of interaction within the epidemiologic literature. However, we
believe the tutorial will be of use for applied researchers throughout the biomedical and social
sciences.

In this tutorial, we discuss the concept of interaction, some of the motivation for studying interaction,
forms of statistical interaction and the issue of scale dependence, methods for estimating additive and
multiplicative interaction, issues of confounding control and the causal interpretation of interaction
measures, and how best to present interaction analyses. We also cover a number of more specialized topics
including so-called “qualitative” or “crossover” interactions, interaction in the sufficient cause framework
and in other mechanistic senses, the limits of statistical inference about biologic or physical interac-
tions, methods for attributing effects to interactions, case-only designs for interaction, interaction for
continuous outcomes, methods to identify subgroups to target using multiple covariates, the role of
unmeasured confounding in interaction analyses, and power and sample size calculations for interac-
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tion. The tutorial is long and is perhaps best read in two separate sittings. We have divided the tutorial
into two parts: “Part I: Fundamental Concepts and Approaches for Interaction” and “Part II:
Limitations, Extensions, Study Design, and Properties of Interaction Analysis” Part I is more introduc-
tory and accessible; Part II covers some more advanced topics and some of these are a bit more
technical.

1 Part I: Fundamental concepts and approaches
for interaction

1.1 Motivations for assessing interaction

There are a number of practical and theoretical considerations that motivate the study of interaction.
One of the most prominent of these is that, in a number of settings, resources to implement inter-
ventions may be limited. It may not be possible to intervene on or treat an entire population.
Resources may only be sufficient to treat a small fraction. If this is the case, then it may be important
to identify the subgroups of individuals in which the intervention or treatment is likely to have the
largest effect. As will be discussed below, methods for assessing additive interaction can help
determine which subgroups would benefit most from treatment. Other more sophisticated methods
can help identify groups of individuals, based on a large number of covariates, who would or would
not benefit, or who would benefit to the greatest extent, from treatment. Even in settings in which
resources are not limited and it is possible to intervene on everyone, it may be the case that a
particular intervention is beneficial for some individuals and harmful for others. In such cases, it is
very important to identify those groups for which treatment may be harmful and refrain from treating
such persons. Techniques for assessing such so-called “qualitative” or “crossover” interactions are
discussed in this tutorial are useful in this regard.

Another reason sometimes given for empirically assessing interaction is that it may provide insight
into the mechanisms for the outcome. We will describe in this tutorial how it is possible to sometimes
detect individuals for whom an outcome would occur if both exposures are present but would not occur if
just one or the other were present. We will see that this more mechanistic notion of interaction is quite
distinct from more statistically-based notions of interaction; we will see that in some cases we can gain
insight into whether there might be a mechanism requiring two or more specific causes to operate and we
will discuss the limits of such reasoning. Yet another reason sometimes given for studying interaction is
that leveraging interactions that may be present may in fact help increase power in testing for the overall
effect of an exposure on an outcome. In some settings, by jointly testing for a main effect and for an
interaction simultaneously, it is possible to detect an overall effect when tests that ignore the interaction
would not otherwise be able to detect the effect. It has been proposed that this may be especially
important in the context of studying genetic variants when many variants are being tested and correction
for such multiple testing reduces power, whereas allowing for the joint test may increase power to detect
the effects.

As noted above, one of the motivations for studying interaction is to identify which subgroups
would benefit most from intervention when resources are limited. However, in some settings, it may
not be possible to intervene directly on the primary exposure of interest, and one might instead be
interested in which other covariates could be intervened upon to eliminate much or most of the effect
of the primary exposure of interest. In these cases, methods for attributing effects to interactions,
discussed in the latter part of the tutorial, can be useful in assessing this and identifying the
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most relevant covariates for intervention. Finally, sometimes interactions are modeled not with any
specific scientific or policy goal in mind concerning interactions per se, but simply because the
statistical model fits the data better when the model includes the additional flexibility allowed by
an interaction term. These various motivations for studying interaction are distinct and, as we will see
throughout, when studying interaction it is important to clearly understand what the goal of the
analysis is.

1.2 Measures of interaction and scale of interaction
As a motivating example, consider data presented in Hilt et al. (1986) concerning the effect of smoking

on lung cancer and how this varied by previous exposure to asbestos. The risk of lung cancer
comparing smokers and non-smokers varied by asbestos exposure as presented in Table 1.

Table 1 Risk of lung cancer by smoking and asbestos status

No asbestos Asbestos
Non-smoker 0.0011 0.0067
Smoker 0.0095 0.0450

It seems as though lung cancer risk is much higher when both smoking and asbestos exposure are present
together. This is an example of what we might call an interaction.

Let D denote a binary outcome. Let G and E denote two binary exposures of interest. These might be a
genetic factor and an environmental factor, respectively, but our discussion will not be restricted to
gene—environment interaction and G and E could represent any two factors; later in the tutorial we will
also discuss interaction when the factors are not binary, but much of the discussion here generalizes in a
straightforward manner. Let py,e = P(D = 1|G = g,E = e) be the probability of the outcome when G is
value g and E is value e. A natural way to assess interaction is to measure the extent to which the effect
of the two factors together exceeds the effect of each considered individually (cf. Rothman, 1986; Szklo and
Nieto, 2007). This could be measured by:

(P11 — Poo) — [(P1o — Poo) + (Po1 — Poo))- 1]

Here (p11 — poo) would be interpreted as the effect of both factors together compared to the reference
category of both factors absent. The expressions (pi1o — poo) and (po1 — poo) would be the effects of the first
factor alone and the second factor alone, respectively. We would then consider the contrast between the
effects of both factors together versus the sum of each considered separately. If this difference were non-
zero we might say that there was interaction on the difference scale. For now, we will assume that the
probabilities of the outcome under different exposure combinations correspond to the actual effects of the
exposures on the outcome; we will consider issues of confounding and covariate adjustment in interaction
analyses further below.

The measure in eq. [1] is sometimes referred to as a measure of interaction on the additive scale. The
measure in eq. [1] can be rewritten as:

P11 — P10 — Po1 + Poo- 2]

If p1i — pio — Po1 + Poo > 0, the interaction is sometimes said to be positive or “super-additive.” If
P11 — P1o — Po1 + Poo < 0, the interaction is said to be negative or “sub-additive”.
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For the data in Table 1, we have

b1 — P10 — Po1 + Poo
= 0.0450 — 0.0095 — 0.00670 + .0011
= 0.0299.

We would have evidence here of positive or “super-additive” interaction.
Sometimes, instead of using risk differences to measure effects, one might use risk ratios or odds ratios.
For example, we could define the risk ratio effect measures as:

RR1o = p10/Poo;
RRo1 = po1/Poo,

RRy; = p11/Poo-

A measure of interaction on the multiplicative scale for risk ratios could then be taken as:

RRu _ puboo
RRioRRo1  Piobor

3]

This quantity measures the extent to which, on the risk ratio scale, the effect of both exposures together
exceeds the product of the effects of the two exposures considered separately. If RRy1/(RRioRRo1) > 1, the
multiplicative interaction is said to be positive. If RRy;/(RR10RRo1) < 1, the multiplicative interaction is said
to be negative. Note that we compare the measure RRy;/(RRioRRo;) to 1 rather than to O here since
RRy1/(RR10RR(,) is a ratio. If the ratio is 1, then the effect of both exposures together is equal to the product
of the effect of the two exposures considered separately, that is, there is no interaction on the multiplicative

scale for risk ratios. This measure of multiplicative interaction can also be rewritten as RR}ffékm = IIJ}—; ;’—(‘)2, i.e.

as the ratio of (i) the relative risk for G when E = 1 versus (ii) the relative risk for G when E = 0. Likewise, it

can be written as RRRR};}? =2u /Pu i e 3s the ratio of (i) the relative risk for E when G = 1 versus (ii) the
10RKRo1 P’ Poo

relative risk for E when G = 0.

Using the data in Table 1, we have that the measure of multiplicative interaction is given by:

RRy
RR10RRo;
(0.0450/0.0011)
{(0.0095/0.0011) x (0.0067/0.0011)}
409
T 86x6.1

=0.78.

We would have evidence here of negative multiplicative interaction.
This example also demonstrates that whether an interaction is positive or negative may depend on the scale.
We may have a positive interaction on the additive scale but a negative interaction on a multiplicative scale.
Said another way, the effect of both exposures together on the risk difference scale may exceed the sum of the
effects on the risk difference scale of each considered separately, while it also being the case that the risk ratio
for both exposures together is less than the product of the effects of the two exposures considered separately.
Likewise, interaction may be present on one scale but absent on another. Consider the data in Table 2.

Table 2 Risk of outcome by cross-classified exposure status

E=0 E=1

0.02 0.05
0.07 0.10

I
=
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Here there is no additive interaction since py; — p1o — Po1 + Poo = 0.10 — 0.07 — 0.05 + 0.02 = O but there
is a negative multiplicative interaction since RRiy;/(RRioRRm) = (0.10/0.02)/{(0.07/0.02)(0.05/0.02)} =
5/(3.5 x 2.5) = 0.57< 1. Likewise in other settings we might have additive interaction but no multiplicative
interaction. Consider the data in Table 3.

Table 3 Risk of outcome by cross-classified exposure status

E=0 E=1
G=0 0.02 0.05
G=1 0.04 0.10

Here the additive interaction is positive since p;; — p1o — Po1 + Poo = 0.10 — 0.04 — 0.05 + 0.02 = 0.03 > O,
but there is no multiplicative interaction since RRy;/(RR1oRRo1) = (0.10/0.02)/{(0.04/0.02)(0.05/0.02)} =
5/(2 x 2.5) = 1. In fact it can be shown (cf. Greenland et al., 2008) that if both of the two exposures have an
effect on the outcome, then the absence of interaction on the additive scale implies the presence of
multiplicative interaction for relative risks and likewise, the absence of multiplicative interaction for relative
risks implies the presence of additive interaction. In other words, if both of the two exposures have an effect
on the outcome, then there must be interaction on some scale. This raises the question of why interaction is
of interest and which scale is to be preferred. It also makes clear that just to say that there is an interaction
on some scale is relatively uninteresting; all it means is that both exposures have some effect on the
outcome. Once again, when undertaking interaction analyses it is important to clarify what the goal or the
motivation for the analysis is and choose a measure of interaction accordingly. In a subsequent section, we
will turn to the arguments for and interpretation of additive versus multiplicative interaction. In general,
however, either the presence or the absence of additive or multiplicative interaction may be of interest, and
so it may be good practice to evaluate both additive and multiplicative interactions.

One reason why additive interaction is important to assess (rather than only relying on multiplicative
interaction measures) is that it is the more relevant public health measure (Blot and Day, 1979; Saracci,
1980; Rothman et al., 1980; Greenland et al., 2008). Consider again the outcome probabilities in Table 3.
Suppose that the outcome probabilities represent the probability of a disease being cured for a drug (E)
stratified by genotype status (G). The effect of E on the risk difference scale among those with G = 0 is
0.05 — 0.02 = 0.03; while the effect of E among those with G =1 is 0.10 — 0.04 = 0.06. If we had only 100
doses of the drug and we had to decide which group to treat, we could cure three additional persons if we
used all of the drug supply among those with G = 0, but we could cure six additional persons if we used all
of the drug supply among those with G = 1. All other things being equal, we would clearly want to give the
drug supply to those with G = 1. The additive interaction measure, p;; — p1o — Po1 + Poo = 0.03 > 0, allows
us to see this. The multiplicative interaction measure, RRy;/(RR;oRRo;) = 1, does not.

In fact, the multiplicative scale can indicate the wrong subgroup to treat. Suppose in Table 3 we replace
the final probability of cure 0.10 with 0.09. Then the effect on the difference scale of E among those with
G =0 is 0.05 — 0.02 = 0.03; the effect of E among those with G =1 is 0.09 — 0.04 = 0.05. Thus, on the
difference scale, the effect size is larger for the G = 1 subgroup, indicating this is the subgroup we would
like to treat if resources are limited. However, on the risk ratio scale, the effect for those with G =0 is
0.05/0.02 = 2.5 and for those with G =1 it is 0.09/0.04 = 2.25; the risk ratio effect size is larger for the
G = 0 subgroup; however, this is not the subgroup we would want to allocate limited resources to. If we
had only 100 doses of the drug, we could cure three additional persons if we used all of the drug supply
among those with G = 0, but we could cure five additional persons if we used all of the drug supply among
those with G = 1. All other things being equal, we would clearly want to give the drug supply to those with
G = 1. The issue with the multiplicative scale here is that the baseline risk is different in the two subgroups,
and thus the risk ratio is operating on different baseline risks.

The possibility of positive additive interaction but negative or null multiplicative interaction is not
simply a theoretical possibility. This was precisely the situation with the lung cancer data in Table 1 where
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we had a positive additive interaction, but a negative multiplicative interaction. It was likewise the case in
analyses of the joint effects of Helicobacter pylori and use of NSAIDs in causing peptic ulcer (Kuyvenhoven
et al., 1999) with slightly positive additive interaction but negative multiplicative interaction. Similarly, in
analyses of interaction between factor V Leiden mutation and oral contraceptive use in causing venous
thrombosis, the multiplicative interaction was found to be close to null, but there was a positive additive
interaction (Vandenbroucke et al., 1994). Using the multiplicative interaction results in any of these cases to
determine which subgroups to prioritize intervention would have given the wrong conclusion. For example,
from the data in Table 1 more lives would be saved by removing asbestos from homes of smokers first; the
risk ratios give the opposite conclusion. Indeed dismissing the importance of one factor in assessing the
effects of another because of the absence of multiplicative interaction can be quite dangerous: the null
multiplicative interaction between factor V Leiden mutation and oral contraceptive use may lead to false
reassurances that “it does not matter” whether one carries the mutation or not for the decision to start using
oral contraceptives; whereas, in fact, because those with the factor V Leiden mutation have a roughly seven
times higher baseline risk than those without the mutation (Vandenbroucke et al., 1994), the “constant risk
ratio” for oral contraceptive use results in a much higher increase in absolute risk for those with the factor V
Leiden mutation than those without.

More generally, p1; — p1o — Po1 + Poo > 0 implies the public health consequence of an intervention on E
would be larger in the G = 1 group, while py; — p1o — Po1 + Poo < O implies the public health consequence of
an intervention on E would be larger in the G = 0 group. Thus, while it may be of interest to assess
multiplicative interaction, additive interaction should also in general be examined, if for no other reason
than to assess public health relevance.

In some case—control study designs, only the odds ratio can be evaluated and thus effect measures and
interaction measures are evaluated on an odds ratio scale. The effects for each of the exposures considered
separately and both considered together on the odds ratio scale are defined respectively by:

pio/(1 = po)
OR,o = P10/ = Pro)
10 Poo/(1 = poo)
Dot/ (1 — por)
ORgy = P/ 1= Pou)
o Poo/(1—Dpoo)

pu/(1—pu)
ORy="—"~—"—"°.
" Poo/(1 = poo)

A measure of interaction on the multiplicative scale for odds ratio could then be taken as:

ORyy

OR1oORo; 14

This quantity measures the extent to which, on the odds ratio scale, the effect of both exposures together
exceeds the product of the effects of the two exposures considered separately. If OR;;/(OR19ORo1) > 1, the
multiplicative interaction is said to be positive. If ORy; /(OR100R¢;) < 1, the interaction is said to be negative.
For the data in Table 1, we have

ORy

4279
- 8.71x6.13

= 0.80.

The measure of multiplicative interaction on the odds ratio scale is negative. The measure is very close to
what was obtained for the multiplicative interaction on the risk ratio scale, i.e. 0.78.
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In general, measures of multiplicative interaction on the odds ratio and risk ratio scales will be very
close to one another whenever the outcome is rare. When the outcome is rare, both (1 — pg.) and (1 — pgo)
will be close to 1 and thus the odds ratios approximate risk ratios since

pge/(l - pge) DPge
ORpe = == — =52 25" — RR,,.
8 Poo/(1—Poo)  Poo g

0dds ratios will also equal risk ratios (even when the outcome is common) in certain case—control designs
in which the controls are selected from the entirety of the underlying population rather than just from the
non-cases (cf., e.g. Knol et al., 2008, for further review and discussion of this point).

We may also be interested in assessing additive interaction from data when only relative risks are
available or reported. Although we may not be able to estimate the additive interaction in eq. [2], i.e.
P11 — P1o — Po1 + Poo, directly, we can still proceed as follows. If we divide eq. [2] by poy we obtain the
following:

RERIRR = RRH — RRlo — RROl + 1. [5]

This quantity is sometimes referred to as the “relative excess risk due to interaction” or RERI (Rothman,
1986). It is also sometimes referred to as the “interaction contrast ratio” or ICR (Greenland et al., 2008). This
gives us something similar to additive interaction but using risk ratios rather than risks. Subsequently, we
will refer to this quantity in eq. [5] as RERIzgz. We have that RERIgg > 0 if and only if for the additive
interaction in eq. [2], piu — P10 — Po1 + Poo > 0; likewise RERIzz < O if and only if py; — p1o — Po1 + Poo < 0;
and RERIgg = 0 if and only if p;; — p1o — po1 + Poo = 0. Thus, we can assess whether additive interaction is
positive, negative, or zero using risk ratios and RERIgg. It should be noted that although RERIgg gives the
direction (positive, negative, or zero) of the additive interaction, we cannot in general use RERIz; to make
statements about the relative magnitude of the underlying additive interaction for risks,
P11 — P1o — Po1 + Poo, unless we know pgo. We may have RERIgg larger in one of two subpopulations, but
the additive interaction for risks, pi1 — pio — Po1 + Poo, may be larger in the other; this is because the
baseline risks, poo, may differ and RERIzz depends on the baseline risk (Skrondal, 2003).! However, again,
only the direction, rather than the magnitude, of RERIgg is needed to draw conclusions about the public
health relevance of interaction. If we are trying to decide which subgroup of G to target for an intervention
when resources are limited, RERIgg > O implies the public health consequences of an intervention on E
would be larger in the G =1 group, while RERIzz <0 implies the public health consequences of an
intervention on E would be larger in the G = 0 group.

A few other measures of additive interaction using data from risk ratios or odds ratios are sometimes
employed. The so-called synergy index (Rothman, 1986) is defined as:

RR;; —1
(RRlo — 1) —+ (RROl — 1) ’

It measures the extent to which the risk ratio for both exposures together exceeds 1, and whether this is
greater than the sum of the extent to which each of the risk ratios considered separately each exceed 1.
Suppose the denominator of S is positive, then if S>1 then we will have RERIzz >0 and thus

1 For example, suppose that the risks for G and E, stratified by gender, are: for males, pog = 0.02, po; = 0.03, p1o = 0.03, and
pu = 0.06 and for females poo = 0.01, po; = 0.02, p;p = 0.02, and p;; = 0.05. Then the additive interaction for risks for males is
P11 — P1o — Pot + Poo = 0.02 and for females it is also p;; — p1o — Po1 + Poo = 0.02. However if we examine RERIgg for males we
get RERIgg = (P11 — P1o — Po1 + Poo)/Poo = 1 but for females we obtain RERIgg = (P11 — P10 — Po1 + Poo)/Poo = 2. We have a
higher RERIgg for females than for males even though the underlying additive interaction for risks is the same. We obtain a
higher RERIRy for females because the baseline risk for females poo = 0.01 is lower than for males, poo = 0.02. Again RERIgg can
be used to assess the direction (positive, negative, or zero) of the additive interaction for risks but not the magnitude of the
additive interaction for risks. If the magnitude (rather than just the sign) of RERIRy is going to be interpreted then it must be kept
in mind that this magnitude is on the excess relative risk scale, and this does not necessarily correspond to the relative
magnitude of additive interaction for risks. Once again, this is because the baseline risks may differ across groups.
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P11 — P1o — Po1 + Poo > 0; and if S< 1 then we will have RERIRg < 0 and thus p;; — p1o — Po1 + Poo < 0. Thus,
the synergy index can likewise be used to assess additive interaction. The interpretation of the synergy
index becomes difficult in settings in which one or both of the exposures is preventive rather than causative
so that the denominator of S is negative (Knol et al., 2011).? This issue does not arise with RERIzg because
the denominator of RERIgg is never negative. The issue can be resolved with the synergy index S by
recoding the exposures so that neither is preventive in the absence of the other (Knol et al., 2011). Another
measure of additive interaction that is sometimes used is called the attributable proportion and is
defined as:

_ RRyy — RRyo — RRo; +1

AP
RRy

and essentially measures the proportion of the risk in the doubly exposed group that is due to the
interaction itself. The attributable proportion is essentially a derivative measure of the relative excess risk
due to interaction: AP > O if and only if RERIzg > 0; and AP< 0 if and only if RERIzg < 0. A variant on the
attributable proportion may also be potentially of interest. The attributable proportion measured above,

AP :%@ﬁm :RR“fszl}g;RR‘“H :”“’pmpflf""*po‘), essentially measures the proportion of risk in the doubly

exposed group that is due to interaction. Alternatively, we might consider the proportion of the joint effects
of both exposures together that is due to interaction (Rothman, 1986; VanderWeele, 2013). This measure is

— RERIgr __ RRy—RRi0—RRo1+1 __ pu—pio—Por+Poo
RRy—1 RRy—1 Pu—Poo

in the section on attributing effects to interactions.

All of these measures can be used in cohort studies, but these measures are also of interest and can be
employed in case—control studies as well. Suppose that we only have estimates for odds ratios but that the
outcome is rare (or that the controls are selected from the entirety of the underlying population rather than
just from the non-cases cf. Knol et al., 2008) so that odds ratios approximate risk ratios. We could then
replace each of the risk ratios in RERIgg, the synergy index S, or the attributable proportion measures, with
odds ratios to obtain approximations to each of these measures of additive interaction. For example, for the
relative excess risk due to interaction, we can define RERIpr = ORy; — ORg — ORo; + 1, which is the odds
ratio analog of RERIgg. If the outcome is rare then we have that

given by AP* . Its properties will be considered later in the tutorial

RERIog = ORy; — ORyo — ORgy + 1
~ RRy1 — RRi9 — RRy; +1 = RERIRp.

Thus, when odds ratio approximate risk ratios, we can assess additive interaction, at least approximately,
even if only estimates of odds ratios are available from case—control study designs. Note that for this
argument to apply using the assumption of a rare outcome (10% is often used as a threshold in practice),
the outcome must be rare in each stratum defined by the two exposures. Sampling controls for the entire
underlying population rather than only the non-cases removes the need for this rare outcome
assumption.

As an example, Figueiredo et al. (2004) studied the effects of XRCC3-T241M polymorphisms and alcohol
consumption on breast cancer risk using a case—control study design. The genetic risk factor was con-
sidered the M/M genotype versus a reference of the T/T or T/M genotype. They obtained the odds ratio in
Table 4 from their case—control study.

2 When one or both of the exposures is preventive, rather than causative (i.e. RRjp<1 and/or RRy <1), such that the
denominator of S, (RRyo — 1) + (RRo; — 1), is less than O, then with an inequality like S > 1, multiplying both sides of this
inequality by (RRjo — 1) 4+ (RRo1 — 1), which is negative, will reverse the sign of the inequality, because of multiplication by a
negative number, to give RRy; — 1< (RRjo — 1) + (RRo1 — 1) or RERIgg < 0; and thus when the denominator of S is negative, S<1
becomes the condition for positive additive interaction, which can be confusing. In general, it is thus best not to report S unless
the denominator, (RRyo — 1) + (RRy — 1), is positive.
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Table 4 0dds ratios for breast cancer by strata of alcohol
consumption and XRCC3-T241M

No alcohol Alcohol
T/TorT/M 1 1.12
M/M 1.21 2.09

Although we cannot assess additive interaction directly using risks, pi; — pio — Po1 + Poo, from the odds
ratios in Table 4, we can still estimate

RERIpr = ORy; — ORyg — ORg +1
=209-121-11241=0.76 >0

and so we would have evidence of positive additive interaction. Breast cancer is a relatively rare outcome,
and so odds ratios will closely approximate risk ratios in this study. Likewise, we could calculate the
synergy index S = m =3.30 > 1, again indicating positive additive interaction. And we can
calculate the proportion of risk in the doubly exposed group attributable to interaction,

Ap = RRu—Re—RRat1 _ 36.4% or the proportion of the joint effects of both exposures attributable to inter-

: « _ RRy—RRp—RRy+1 _
action, AP* = S=po—FLE = 69.7%.

1.3 Statistical interactions and statistical inference

In practice, interactions are often evaluated by using statistical models by including a product term for the
two exposures in the model. A statistical model on the linear scale accommodating interaction might take
the form:

P(D=1/G=g,E=¢e) =ap+ g+ xme + azeg. [6]

It can be verified under this model that a9 =pos, @1 =pPi0o—Poo, 02 =Po1 —Poo, and

03 = P11 — P10 — Po1 + Poo- The coefficient o3 is thus equal to our measure of additive interaction based

on risks; for this reason, a3 is sometimes referred to as a statistical interaction on the additive scale.
Similarly, one might use a log-linear model for risk ratios, including a product term:

log{P(D =1|G = g,E =€)} = f, + p18 + p,e + pseg. [7]

Here we have that e’ = pyo, " = RRyg, €2 = RRyy, and e’ = RRy;1/(RR10RRy,;). The so-called “main effects”,
p, and f,, when exponentiated, simply give the risk ratios for each of the two exposures when each is
considered alone. The coefficient #;, when exponentiated, gives our measure for multiplicative interaction
for risk ratios, RR11/(RR1oRRo ). The coefficient j; is thus often referred to as a statistical interaction for a log-
linear model. Likewise, one might use a logistic model for odds ratios, including a product term:

logit{P(D =1|G =g,E =€)} = yo + 118 + 7,€ + 13€8. 8]

Here we have that e’ = poo/(1 — poo), € = ORyo, €2 = ORo1, and e’ = ORy1/(OR10ORy;). The main effects,
y; and y,, when exponentiated, simply give the odds ratios for each of the two exposures. The coefficient y,
when exponentiated, gives our measure for multiplicative interaction for odds ratios, ORy;/(OR1oORp).
Thus, y; is referred to as a statistical interaction for a logistic model. The equality e’ = pgo/(1 — poo) will
only hold with cohort data. However, all the other equalities, e = ORy9, €2 = ORp, and
€’ = ORy1/(OR100Ry; ), will hold for both cohort data and case—control data. We can thus assess both of
the main effects of the exposure and the multiplicative interaction between the exposures on an odds ratio
scale using case—control data.



42 —— T.).VanderWeele and M. J. Knol: A Tutorial on Interaction DE GRUYTER

When the outcome and both exposures are binary, and no further covariates are included, it is
straightforward to fit these models to the data using standard software. The estimate and confidence
intervals obtained by maximum likelihood estimation and given by such software for o3 will constitute
an estimate and confidence interval for the additive interaction py; — p1o — Po1 + Poo. The estimate and
confidence intervals obtained by maximum likelihood estimation and given by such software for f; and y;,
when exponentiated, will constitute an estimate and confidence interval for the multiplicative interaction
on the risk ratio and odds ratio scales, respectively. Statistical inference for interaction is thus straightfor-
ward in these cases.

Often we may want to control for other covariates in models [6]—[8]. For example, we may want to fit
the following analogous models which include an additional vector of covariates, C:

PD=1G=gE=¢e,CC=c)=ao+ g+ e+ ozeg + a,c,
log{P(D=1|G=g,E =e,C=c)} =y + f1g + e + feg + fc,

logit{P(D =1|G =g,E =e,C =)} =y + 118 + 726 + 7388 + V,C.

Unfortunately, the linear and log-linear models, when fit to data, will often run into convergence problems
in the maximum likelihood algorithms used to fit the models, especially when there are continuous
covariates in C, because the models do not ensure that the predicted probabilities lie between 0 and 1.
The logistic model with covariates does not suffer from this problem. For this reason, the most common
approach to assessing interaction in practice has become fitting the logistic model with covariates and
assessing the estimate and confidence interval for the product term coefficient, y;, in this model. This
approach is also popular because it can be implemented in a straightforward way with case—control data as
well. The coefficient, y;, is an important and useful measure of interaction and proceeding with this strategy
is recommended.

However, as discussed throughout this tutorial, it is also recommended that investigators assess
additive interaction as well. This can be more challenging when covariates are in the model. Additional
strategies to fit linear and log-linear models with covariates using data from cohort studies have been
described elsewhere (cf. Yelland et al., 2011; Knol et al., 2012, for overviews of several different methods). In
the next section, however, we will describe what has now become a fairly standard approach (Hosmer and
Lemeshow, 1992) to estimating additive interaction, with covariate control, which consists of using a
logistic regression with additional covariates and transforming the parameter estimates to obtain estimates
and confidence intervals for the relative excess risk due to interaction (RERI).

1.4 Inference for additive interaction

Suppose the following model is fit to the data:
logit{P(D =1|G=g,E =e,C =)} =y, + 18 + 1€ + ;68 +7C. [9]
We then have that

RERIpr = ORy; — ORyg — ORg +1

— ettt _on _ on +1.

Thus, we can estimate a measure of additive interaction, RERIpg, using the parameters of a logistic
regression. This approach has the advantage that the logistic regression in eq. [9] can more easily be fit
to data when there are continuous covariates than the corresponding linear or log-linear models for binary
outcomes given in the previous section. This approach with logistic regression also has the advantage that
it can be employed even with case—control data. Even with cohort data, if the outcome is rare, this
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approach to additive interaction using RERIpr can often be helpful because the logistic regression model
often fits data quite well and has fewer convergence issues than a linear or log-linear model for risk, as
discussed above. The logistic regression model has the interesting implication that if the model is correctly
specified so that the log odds are linear in the covariates C, then the RERIpg measure will also be constant
across strata of the covariates. This approach to RERIyg, as other modeling approaches, presupposes that
the statistical model is correctly specified. We discuss below other modeling approaches for additive
interaction that make different modeling assumptions.

Standard errors for RERIpR, as estimated above, can be obtained using the delta method (Hosmer and
Lemeshow, 1992). Software options are now available to estimate these standard errors (e.g. Lundberg et al.,
1996; Andersson et al., 2005).? In the Appendix, we provide some simple SAS code to estimate RERIp and
its standard error using the delta method. We likewise describe how this can be done in Stata (cf. Ai and
Norton, 2003; Norton et al., 2004). Finally, as an online supplement to this tutorial, we have provided an
Excel spreadsheet that can be used in conjunction with standard output from logistic regression (output on
parameter estimates and either the covariance or correlation estimates) using any software package. The
current Excel spreadsheet offers somewhat more flexibility than previous versions of the spreadsheet in
allowing for confidence intervals of any percentile.

The approach described above works well if the outcome is rare so that RERIpg approximates RERIgg. If
the outcome is common, RERIpz may not be an adequate measure of additive interaction. In such cases, for
cohort data, one could estimate RERIzr by replacing the logistic model in eq. [9] with a log-linear model,
though such log-linear models with continuous covariates C may not always converge; likewise an
approach for risk ratios using modified Poisson, rather than logistic regression, has also been proposed
that can be used with a common outcome (Zou, 2008). Alternatively, with cohort data with a common
outcome, one may use a weighting approach to estimating additive interaction (VanderWeele et al., 2010).
This approach models the relationship between the exposures and the covariates, rather than between the
outcome and the covariates.

Our discussion thus far has focused on binary exposures. A similar approach can be used with
categorical, ordinal, or continuous exposures. The logistic regression model above in eq. [9] could be fit
to the data if the two exposures G and E were ordinal or continuous. However, when additive interaction is
carried out for ordinal or continuous exposures using this approach based on logistic regression, two things
must be kept in mind, one analytical and one interpretative. First analytically, for ordinal and continuous
exposures, it is important to consider the magnitude of the change in the exposures for which one is
examining interaction. If one is considering a change for the value of G from g, to g; and a value of E from
eo to e; then instead of using €275 — ¢ — ¢2 + 1 as an estimate of RERIyr one uses

RERIg = el&—8ont(@—eo)nt(gier—goeo)rs _ ple1—80)n+(&1—80)eors _ gler—eo)rst(e1—eo)gors 4 1

This needs to be taken into account when using the software and Excel spreadsheets, so that estimates and
covariance matrices are multiplied by the appropriate factors. This is described in more detail in the

3 To estimate standard errors for RERIpr using logistic regression, in addition to the delta method described by Hosmer and
Lemeshow (1992) and implemented with SAS and Stata code in the Appendix, one may also use bootstrapping which can have
more accurate standard errors when the sample size is small (Assmann et al., 1996); other re-sampling based approaches are
available when some of the outcome counts for particular exposure combinations are low (Nie et al., 2010). Bayesian
approaches to RERIpg are also now available (Chu et al., 2011). When sample sizes are relatively large, the approaches to
estimating RERIpg will give fairly comparable confidence intervals; when sample sizes are small the resampling-based approach
may be more accurate. However, in general, fairly large sample sizes are required to detect interaction; thus, for the most part,
in those very settings in which it is possible and reasonable to test for interaction, the various approaches to estimate RERIpg are
likely to give comparable estimates and standard errors. We discuss issues of power and sample size further below. Easy to
implement software (Richardson and Kaufman, 2009; Kuss et al., 2010) is also available for estimating RERIpr using so-called
linear odds models (cf. Skrondal et al., 2003). This approach, however, can have difficulty handling continuous covariates C.
Such covariates can be handled in linear odds models using a weighting approach for covariate control (VanderWeele and
Vansteelandt, 2011), and this approach can be employed with case—control data as well.
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Appendix. Similar expressions could be given using categorical exposures: under any specific statistical
model and for any two levels of each of the two exposures, one simply calculates the three relative risks
comparing the various exposure combinations to the reference group and one subtracts from the risk ratio
of the doubly exposed group, the two risk ratios for each of the singly exposed groups and adds 1. The
second, more interpretative point, when ordinal, continuous, or categorical exposures are being employed,
is that it is important to keep in mind that the RERIpr measure (or the analogous RERIzg measure) does vary
according to the levels being compared and can vary in sign as well. The additive interaction measure for a
change in E from 10 to 20 and in G from O to 1 may be different than the additive interaction measure for a
change in E from 20 to 30 and in G from O to 1, but again as noted above, the RERIpgr measure should be
interpreted as giving the direction of additive interaction (positive, negative, or zero) and its relative
magnitude does not necessarily correspond to the relative magnitude of the additive interaction for
absolute risks. See also Knol et al. (2007) for further discussion. SAS and Stata code are given in the
Appendix.

1.5 Additive versus multiplicative interaction

The fact that interaction can be assessed on different scales and that interaction is scale dependent raises
the question on which scale interaction should be assessed: additive or multiplicative or some other. The
view of this tutorial is that it is almost always best to present both additive and multiplicative measures of
interaction (Botto and Khoury, 2001; Vandenbroucke et al., 2007; Knol and VanderWeele, 2012). In practice,
measures of multiplicative interaction, using logistic regression, are most frequently reported. This is very
likely simply done because of convenience, rather than because careful thought has been given to which
measure is to be preferred. Standard software using logistic regression will automatically give an estimate
and confidence interval for multiplicative interaction. As noted in the previous section, additional work is
required in most current software packages to obtain measures of additive interaction, and for this reason it
is not often done. In a recent review of a random sample of 25 cohort and 50 case—control studies from the
five most highly ranked epidemiological journals, Knol et al. (2009) noted that although 61% of the studies
included at least as secondary analyses an assessment of effect modification or interaction, only one
reported a measure of additive interaction. In our view, it is in general a mistake to not report additive
interaction. As noted above and as discussed further below, additive interaction is always relevant for
assessing the public health significance of an interaction. Although we believe both additive and multi-
plicative interactions should in general be reported, we nonetheless review some of the reasons that have
been put forward for using one scale versus the other.

The difference scale is useful for assessing the public health importance of interventions and the public
health significance of interaction (Blot and Day, 1979; Saracci, 1980; Rothman et al., 1980; Greenland et al.,
2008). As noted above, if the effect of an intervention is larger on the difference scale in one subgroup
versus another, then this indicates that there would be larger numbers for whom the disease was
prevented/cured in giving a hundred individuals in the first subgroup treatment versus giving a hundred
individuals in the second subgroup treatment. Such information is useful for targeting subpopulations for
which the intervention is most effective. This will be relevant whenever resources are constrained and thus
relevant also for cost-effectiveness (Greenland, 2009). As discussed above, the additive, not the multi-
plicative, scale gives this information. A second reason sometimes given for using additive interaction is
that it more closely corresponds to tests for mechanistic interaction, rather than merely statistical interac-
tion (Greenland et al., 2008; VanderWeele and Robins, 2007, 2008; VanderWeele, 2010a, 2010b). As
discussed further below, tests for additive interaction can sometimes be used to detect synergism in
Rothman’s (1976) sufficient cause framework. Conceived of another way, assessing additive interaction
can sometimes be used to assess whether there are persons for whom the outcome would occur if both
exposures were present but not if only one or the other of the exposures were present. As discussed below,
this ends up being a different, and in many cases stronger, notion of interaction than merely a statistical
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interaction. We return to this point in later sections. Finally, as also discussed further below, tests for
additive interaction are sometimes more powerful than tests for multiplicative interaction and thus for the
purposes of discovery and detection, the additive scale may be preferred as well.

Several reasons are also often put forward for using the multiplicative scale. First, as noted above,
it is easier to fit multiplicative models (such as logistic regression), and the multiplicative scale is the
most natural scale on which to assess interaction for such models; moreover, when using such models,
measures of multiplicative interaction are readily obtained from standard software. Second, it is some-
times claimed that there is in general less heterogeneity on the multiplicative scale. Studies of meta-
analyses have suggested that in terms of statistical significance, the risk ratio and odds ratio are less
heterogeneous than the risk difference (Engels et al., 2000; Sterne and Egger, 2001; Deeks and Altman,
2003).* However, it is not entirely clear the extent to which this is simply due to difference in power
across the different scales or whether there is genuinely less heterogeneity. Nevertheless, if it is indeed
the case that the multiplicative scales (odds ratio or risk ratio) are “less heterogeneous”, and this
indicates something about the underlying biology as to how effects typically operate (see comments on
the “Limits of Biologic Inference” below), then detecting an interaction on a multiplicative scale may be
of greater import than detecting interaction on the additive scale. A third reason sometimes given for
using the multiplicative scale for overall effects (but also potentially applicable to interaction), stated in
some epidemiology textbooks, is that the relative effect measures are better suited to “assessing
causality”. According to Poole (2010), this notion can be traced back to a paper by Cornfield et al.
(1959) showing that smoking was strongly related to lung cancer but not to other diseases on a relative
risk scale, while smoking seemed similarly related to lung cancer and also to other diseases on an
absolute risk scale. Because specificity of effect was seen as a criterion of causality (Hill, 1965), the
relative risk scale was seen as superior over the absolute risk scale in assessing causality. As noted by
Poole (2010), whether the relative or absolute measure is more useful for “assessing causality” will,
however, vary by setting. In some cases, such as that considered by Cornfield et al. (1959), the
multiplicative scale may indeed prove to be more useful, and it might be thought that this general
argument then is also relevant to interaction.

Arguments can be given in favor of each of the two scales. However, nothing prohibits investigators
from reporting measures of interaction on both additive and multiplicative scales and, in most settings, we
think this approach is the best because both can be informative (Botto and Khoury, 2001; Vandenbroucke
et al., 2007; Knol and VanderWeele, 2012). The presence or absence of interaction on either scale may be of
interest. However, as noted above, provided both exposures have an effect on the outcome, there will
always be interaction on at least one scale.” The only way there can be no interaction on any scale is for one
of the two exposures to have no effect on the outcome at all. Thus, the fact that interaction is present on
some scale really is not of much interest; provided both exposures have an effect on the outcome, such
interaction on some scale will always be present. This brings us back to the point that was made at the
beginning of the tutorial, that, when studying interaction, it is important to clearly understand what the
goal of the analysis is: What is it that we are trying to learn? What scientific or policy question are we trying
to answer and how does an interaction analysis help us? We have seen above already that interaction on
the additive scale gives insight into which subgroups are best to treat. We will see below that interaction on
the additive scale can also sometimes give insight into more mechanistic forms of interaction. As also
discussed below the absence of interaction on either the additive or the multiplicative scale may also give

4 Engels et al. (2000) found that for 107 of 125 meta-analyses (86%) the p-value for heterogeneity for risk differences was less
than that for the odds ratios. With a p-value cutoff of 0.10, they found that 59 (47%) meta-analyses were heterogeneous for the
risk difference and 44 (35%) were heterogeneous for the odds ratio. Deeks and Altman (2003) likewise reported that the risk
difference was more heterogeneous than the odds ratio or risk ratio using 1,889 meta-analyses. Sterne and Egger (2001) reviewed
78 meta-analyses and found that the p-value for heterogeneity was less than 0.05 in 29%, 27%, and 35% of these meta-analyses,
for the odds ratio, risk ratio, and risk difference, respectively.

5 Though there may not always be sufficient statistical power to detect it, a point we return to below.
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some clues (though rarely definitive evidence) as to the underlying biology; likewise we will see that the
presence of positive multiplicative interaction may give some clues as to mechanisms. But it is always
important to clarify what the goal of the analysis is and what we are trying to learn. Again, the fact that
there is interaction on some scale is otherwise nothing more than acknowledging that both exposures have
some effect.

1.6 Confounding and the interpretation of interaction

Thus far, we have considered measures of interaction using risk differences, risk ratios, and odds ratios. In
general, however, we want to know whether our effect estimates correspond to causal effects rather than
mere associations. In observational studies, we thus attempt to control for confounding. Analytically, this is
often done through regression adjustment for other covariates. In interaction analyses, we have two
exposures and thus potentially two sets of confounding factors to consider. The causal interpretation of
interaction measures depends on whether control has been made for one or both sets of confounding
factors, or neither.

Suppose we have made control for one set of confounding factors, those for the relationship between
our primary exposure of interest and the outcome, but that we have possibly not controlled for confounding
of the relationship between the secondary factor defining subgroups and the outcome. We would in this
case still be able to obtain valid estimates of the effect of the primary exposure within strata defined by our
secondary factor. For example, suppose we found substantial interaction between a drug and hair color
when examining some health outcome. If we had controlled for the confounding factors for the
drug—outcome relationship, or if the drug were randomized, we could interpret our interaction measure
as a measure of heterogeneity concerning how the actual causal effect of the drug varied across subgroups
defined by hair color. If we found that the effect of our primary exposure varied by strata defined by the
secondary factor in this way, then we might call this “effect heterogeneity” or “effect modification.” This
might be useful, for example, in decisions about which subpopulations to target in order to maximize the
effect of interventions. Provided we have controlled for confounding of the relationship between the
primary exposure and the outcome, these estimates of effect modification or effect heterogeneity could
be useful even if we have not controlled for confounding of the relationship between the secondary factor
and the outcome. What we would not know, however, is whether the effect heterogeneity is due to the
secondary factor itself, or something else associated with it. If we have not controlled for confounding for
the secondary factor, the secondary factor itself may simply be serving as a proxy for something that is
causally relevant for the outcome (VanderWeele and Robins, 2007b). For example, if we found that the
effect of the drug varied by strata defined by hair color, this may simply be due to the fact that hair color is
associated with genotype and it is this that is causally relevant for modifying the effect of the drug on the
outcome. If we were simply to dye someone’s hair, this would not change the effect of the drug.

If we are interested principally in assessing the effect of the primary exposure within subgroups defined by
a secondary factor then simply controlling for confounding for the relationship between the primary exposure
and the outcome is sufficient. However, if we want to intervene on the secondary factor in order to change the
effect of the primary exposure then we need to control for confounding of the relationships of both factors with
the outcome. When we control for confounding for both factors we might refer to this as “causal interaction” in
distinction from mere “effect heterogeneity” mentioned above (VanderWeele, 2009a).

As another example, VanderWeele and Knol (2011) considered a randomized trial for a housing interven-
tion program for homeless adults to reduce the number of hospitalizations. Suppose that the effect of the
housing program was examined within strata defined by whether the participants had at least part-time
employment. Here, the housing program is randomized, but employment status is not. If it were found that
the housing intervention had a larger effect for those with part-time employment than for those without, this
could be used as a valid estimate for the effect of the intervention within these different subgroups and could
be useful in subsequently targeting the intervention toward the subgroups for which it would be most
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effective. By randomization, we have controlled for confounding for the housing intervention, but we have
not necessarily controlled for confounding for employment status. Thus, while we could get valid estimates of
effects of the housing intervention within strata defined by employment status, we could not draw conclu-
sions on what would happen if we intervened on employment status as well to try to improve the effect of the
intervention. Again, employment status has not been randomized. Employment status may, for instance, be
serving as a proxy for mental health, and it may be that mental health is in fact what is relevant in altering the
effects of the intervention. It is possible that if we intervened on employment status, without changing mental
health, then this would not alter at all the effect of the housing intervention. We would only be able to assess
what the effect of interventions on employment status in altering the effect of the housing intervention would
be if we had controlled for confounding of the relationship between the factor defining subgroups, namely
employment status, and the outcome.

In summary, if we are interested in identifying which subpopulations it is best to target with a
particular intervention, then assessing effect heterogeneity is fine and only the confounding factors of
the relation between exposure and outcome need be considered (though even here it is sometimes argued
control for other factors can help with external validity and extrapolation to other settings). If we are
interested in potentially intervening on the secondary factor to change the effects of the primary interven-
tion (or if we are interested in assessing mechanistic interaction, described below), then we want measures
of causal interaction and we would need to control for confounding for the relationships between both
factors and the outcome.

In practice, typically a regression model is simply fit to the data, regressing the outcome on the two
exposures, a product term, and possibly other covariates. However, whether the regression coefficient for
the product term can be interpreted as a measure of effect heterogeneity or causal interaction or both or
neither depends on what confounding factors have been controlled for. For effect heterogeneity, we only
have one set of confounding factors to consider, just those for the relationship between the primary
exposure and the outcome. For causal interaction, we have two sets of confounding factors to consider,
those for the primary exposure and the outcome and those for the secondary factor and the outcome.
Epidemiologists are careful to control for confounding and think carefully about confounding in observa-
tional studies for overall causal effects. However, too often issues of confounding have been neglected in
interaction analyses. Careful thought needs to be given to interaction analyses in interpreting associations
as causal and in distinguishing between whether attempt is being made to control for one or both sets of
confounding factors; and which of “effect heterogeneity” (also sometimes called “effect modification”) or
“causal interaction” is of interest will depend upon the context.®

The terms “interaction” and “effect modification” in practice are often used interchangeably. In some
sense, what we have called “effect modification” is still a type of interaction analysis; and what we have
called “causal interaction” could almost be viewed as “effect modification” by intervening on a secondary
variable (VanderWeele, 2009a, 2010c). There is some ambiguity in terminology and it would be difficult to
insist on a particular set of rules for terminology. However, even if the terms themselves are used
interchangeably, it is important to keep in mind that there are still two distinct concepts present. The
distinction again has to do with whether one or two potential interventions are in view. Failure to take the
distinction into account could lead to incorrect policy recommendations. In writing papers, researchers can
make clear which of the two concepts is in view (without having to adopt a strict terminological stance) by
clarifying, in a Methods section, whether confounding control is intended for one or both exposures, and by

6 Additional subtlies also arise in distinguishing between interaction and effect heterogeneity/modification. For example,
VanderWeele (2009a) showed that there can be cases in which effect modification is present but not interaction; or when
interaction is present but not effect modification. Likewise there are also cases in which effect modification measures are
identified from the data, but interaction measures are not; there are more subtle cases in which interaction measures are
identified from the data but effect modification measures are not. Finally, VanderWeele (2009a) also discussed how the analytic
procedures required to fit marginal structural models (Robins et al., 2000) for effect modification/heterogeneity differ from those
required to fit marginal structural models for interaction.
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commenting, in a Discussion section, whether interventions on one or both exposures are being considered
when interpreting the implications of the results.

1.7 Presenting interaction analyses

Careful thought should be given to the presentation of interaction analyses. Very often when interaction or
effect modification is of interest, effect measures are presented for each stratum separately using separate
reference groups. Suppose, for example, we had data as in Table 1 and that effect measures were computed
on the risk ratio scale. We let E = 1 denote asbestos exposure and E = 0 the absence of asbestos exposure
and we let G = 1 denote smoking and G = 0 non-smoking. It is not uncommon for papers to present, e.g.
the (adjusted) risk ratio effect measures for say the exposure E separately across strata of the other factor G.
For example, the effect measures might be presented as in Table 5.

Table 5 Risk ratios with separate reference groups (uninformative
presentation)

No asbestos (E=0) Asbestos (E=1)
Non-smoker (G =0) 1 (reference) RR=6.09
Smoker (G=1) 1 (reference) RR=4.74

While this information can be useful to see that the risk ratio in the non-smoking (G = 0) stratum is larger
than the risk ratio in the smoking (G =1) stratum, and for calculating multiplicative interaction:
4.74/6.09 = 0.78 as above, there are several other comparisons for which Table 5 is uninformative. For
example, by presenting the analyses with separate reference groups (for each of the G=0 and G =1
strata), we will not know from such a presentation whether the (G =0,E =1) subgroup or the
(G =1,E = 0) subgroup is at higher risk for the outcome. In fact, simply from the information in Table 5,
we would not know whether the (G = 1,E = 1) subgroup or the (G = 0, E = 1) subgroup is at higher risk for
the outcome, or whether the (G = 1, E = 0) subgroup or the (G = 0, E = 0) subgroup is at higher risk for the
outcome. Nor do we know from Table 5 what the sign is for measures of additive interaction. Because of
these reasons current guidelines (Vandenbroucke et al., 2007; Knol and VanderWeele, 2012) recommend
that interaction and effect modification analyses be presented with a single common reference group, say
the (G = 0, E = 0) subgroup, or that the original data be presented (Botto and Khoury, 2001). If risk ratios
with a common reference group were used for the data in Table 1, the effects could then be presented in
Table 6.

Table 6 Risk ratios with a common reference group (informative
presentation)

No asbestos (E=0) Asbestos (E=1)

Non-smoker (G = 0) 1 (reference) 6.09
Smoker (G=1) 8.64 40.91

From the information presented in Table 6, which uses a common reference group, we would know that the
ordering of risk across G x E subgroups was (G = 0,E = 0), then (G = 0,E = 1), then (G =1,E = 0), and
then (G = 1,E = 1). We could still calculate the individual risk ratios for E in the different strata of G as:
6.09/1 =6.09 for G =0 and 40.91/8.64 = 4.74 for G=1 (and we could also add these to the table if
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desired). We could thus also estimate measures of multiplicative interaction. We could moreover estimate
the risk ratios for G across strata of E: e.g. 8.64/1 = 8.64 for E = 0 and 40.91/6.09 = 6.72 for E = 1 (and we
could present these in the table if desired). And we could moreover estimate measures of additive
interaction from the information in Table 6: RERIgg = 40.91 — 8.64 — 6.09 + 1 = 27.18 > 0. The presentation
of interaction analyses in Table 6 thus gives the reader far more information (using a single common
reference category) than the presentation in Table 5 (using multiple reference categories). Presenting
interaction analyses using a common reference category such as the presentation in Table 6 is thus to be
preferred. If the study is a cohort study then it may be even further preferable to present the actual risks, as
in Table 1, in the cells of the table, rather than the risk ratios (Botto and Khoury, 2001; Knol and
VanderWeele, 2012).

Knol and VanderWeele (2012) further suggested that when interaction and effect modification analyses
are presented the following items all be given in a table: (1) risk differences or relative risks (or odds ratios if
risk differences or relative risks cannot be calculated) for each (G,E) stratum with a single reference
category (possibly taken as the stratum with the lowest risk of the outcome); (2) risk differences, relative
risks, or odds ratios for G within strata of E, and for E within strata of G; (3) interaction measures on
additive and multiplicative scales, along with confidence intervals and p-values for these; (4) the exposure-
outcome confounders for which adjustment has been made either for one of the exposures (for effect
modification/heterogeneity analyses) or for both of the exposures (for interaction analyses) with clear
indication of whether attempt is being made to control for one or two sets of confounding factors. Knol
and VanderWeele (2012) also considered different layout options for this information and how to further
extend such presentations when one or both exposures has more than two levels. If multiple different
interaction analyses are conducted in the same paper and presented in the same table, it may be desirable
to put all of these items on a single line of a table so that multiple interactions analyses can be presented in
the same table.

Careful thought should be given to presenting interaction analyses, so that the reader has the maximum
amount of information available. In almost all cases, interaction analyses with a single reference group
should be presented. Failure to do so will obscure information from the reader.

1.8 Qualitative interaction

In some cases, we might think that an exposure has a positive effect for one subgroup and a negative effect
for a different subgroup. Such instances are sometimes referred as “qualitative interactions” or “crossover
interactions” (Peto, 1982; Gail and Simon, 1985).” Unlike statistical interactions in which the effects within
two subgroups are both in the same direction, but simply differ in magnitude, qualitative interactions do
not depend on the scale that is being used (de Gonzalez and Cox, 2007). If there is a qualitative interaction
on the difference scale, there will also be a qualitative interaction on the ratio scale.

As an example of such qualitative interaction, Gail and Simon (1985) considered data from a trial of
two therapies for breast cancer, one of which does and the other of which does not involve tamoxifen.
For young patients under age 50 with low progesterone receptor levels, the treatment without tamoxifen
led to higher proportions who were disease-free after 3 years. However, for all other groups (who
were either older, or had higher progesterone receptor levels, or both) the treatment with tamoxifen led
to higher proportions who were disease-free after 3 years. Here, we would likely want to give young patients
with low progesterone receptor levels the treatment without tamoxifen and others the treatment with
tamoxifen.

7 The term “quantitative interaction” is sometimes used exclusively for interactions which are not qualitative interactions (Peto,
1982). However, others use the term “quantitative interaction” to describe a statistical interaction on any scale, and prefer using
“non-crossover interaction” for the presence of interaction which is not a “qualitative interaction” (Gail and Simon, 1985).
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In an example like this, we see then that qualitative interaction is very important in decision-making.
We discussed above that in settings in which the intervention is beneficial for everyone but the magnitude
of the benefit varies across subgroups, additive interaction can be useful in assessing whether it would be
better to target the intervention to some subgroups rather than others if resources are limited. However, in
such settings, if resources are not limited and the intervention is beneficial for everyone we may well want
to treat all subgroups. Qualitative interaction, in contrast, has implications for treatment or interventions
decisions even if resources are unlimited. In the presence of qualitative interaction, we do not want to treat
all subgroups, because the treatment is in fact harmful in some subgroups. If qualitative interaction is
present, it is thus important to be able to detect it.®

Several statistical approaches have been developed for testing for such qualitative interaction (e.g. Gail
and Simon, 1985; Piantadosi and Gail, 1993; Pan and Wolfe, 1997; Silvapulle, 2001; Li and Chan, 2006). The
details of these various approaches and their power properties do vary, but they all essentially coincide
when one is simply testing for qualitative interaction between two subgroups. The approaches differ when
examining qualitative interaction across three or more subgroups.” When testing for qualitative interaction
across two subgroups one particularly simple approach (Pan and Wolfe, 1997) to test for a qualitative
interaction at the 5% significance level is to construct 90% confidence intervals for the exposure effect in
each of the two subgroups. If, on a difference scale say, one of the 90% confidence intervals lies entirely
above 0 and the other lies entirely below 0, then one would reject the null hypothesis of no qualitative
interaction. Note that only 90% confidence intervals (not 95%) need to be constructed here. These
confidence intervals will be narrower than the usual 95% confidence intervals. One could alternatively
carry out the analysis on a ratio scale and construct 90% confidence intervals for the effects in each of the
subgroups and examine whether one of these 90% confidence intervals was completely above 1 and
whether the other was completely below 1.

A special case or limit case of qualitative interaction is what is sometimes called a pure interaction
in which the exposure has no effect whatsoever in one subgroup but does have an effect in a different
subgroup. Like qualitative interactions, pure interactions do not depend on the scale being used.
An example of such a “pure” interaction might include certain genetic variants on chromosome
15¢g25.1 which seem to only affect lung cancer for individuals who smoke and otherwise appear to
have no effect for those who do not smoke (Li et al., 2010). We will consider this example further
below.

8 Often, in a randomized trial, if a particular treatment or drug is known to be detrimental in some subgroups, such subgroups
are typically then excluded from the trial when choosing participants. If this is so, qualitative interaction would then not be
apparent because the groups for which the treatment has harmful effects are excluded in advance.

9 The various approaches do differ when testing for qualitative interaction using more than two subgroups. Pan and Wolfe
(1997) described a fairly straightforward way to carry out such testing. Their approach allows for multiple subgroups and allows
also testing for qualitative interaction of at least a certain magnitude (rather than simply whether one of the effects is larger, and
the other smaller, than 0); it essentially just requires constructing confidence intervals of various sizes depending on the
number of subgroups. Their approach is equivalent to that described by Piantadosi and Gail (1993), sometimes referred to as the
“range test,” but the implementation described by Pan and Wolfe (1997) is easier to carry out. An alternative approach was
proposed by Gail and Simon (1985) which involves not simply constructing confidence intervals for the effects in each subgroup
but rather constructing a confidence interval for the sum of the positive versus negative standardized effects across subgroups.
The approach of Gail and Simon (1985) tends to perform better when there are several subgroups with effects which are positive
and several also with effects which are negative. The approaches of Piantadosi and Gail (1993) and Pan and Wolfe (1997) tend to
perform better if the effects in most of the subgroups are in one direction and there are only one or very few subgroups for which
the effect is in the opposite direction. The motivation for these various approaches involving several subgroups is often having a
continuous covariate or multiple covariates of interest which might define subgroups for which a qualitative interaction is
thought to be present. However, with continuous covariates or multiple covariates, an approach described later in this tutorial
for detecting effect heterogeneity based on a vector of covariate values, and determining for which individuals the treatment
effects are positive versus negative may ultimately prove to be more useful.
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1.9 Synergism and mechanistic interactions

Thus far, we have been considering different notions of statistical interaction and their interpretation.
We noted above that such notions of interaction were scale dependent. In this section, we will consider
drawing conclusions about more mechanistic forms of interaction. We might say that a “sufficient
cause interaction” is present, if there are individuals for whom the outcome would occur if both
exposures were present but would not occur if just one or the other exposure were present
(VanderWeele and Robins, 2007, 2008). If we let D, denote the counterfactual outcome (the outcome
that would have occurred) for each subject if, possibly contrary to fact, G had been set to g and E had
been set to e, then a sufficient cause interaction is present if for some individual D;; =1 but
Do = Dg; = 0. This is in some sense a “mechanistic interaction” insofar as when both exposures are
present the outcome is turned “on” but when only one or the other exposure is present the outcome is
turned “off”. It can furthermore be shown that if such a sufficient cause interaction is present, then
within Rothman’s sufficient cause framework (Rothman, 1976) there must be a sufficient cause for D
which has both G and E as components (VanderWeele and Robins, 2007, 2008). This is thus sometimes
called “synergism” between G and E in the sufficient cause framework. Note that a sufficient cause
interaction does require some individual with D;; = 1 but D;g = Do; = 0 but does not require Dyg = O for
this individual. Further below we will also consider an even stronger notion of “mechanistic interac-
tion” which requires some individual for whom D;; =1 and Djp = Dg; = Dog = 0. However, we will
begin our discussion of mechanistic interaction with the slightly weaker notion of a sufficient cause
interaction, as this is all that is required for synergism between G and E within the sufficient cause
framework.

Additive interaction is sometimes used to test for such mechanistic or sufficient cause interaction.
However, having positive additive interaction only implies such sufficient cause interaction under
additional assumptions. If it can be assumed that both exposures are never preventive for any indivi-
dual (formally, if Dg. is non-decreasing in g and e for all individuals), then provided control is also made
for confounding of both exposures,10 positive additive interaction, p;; — p1o — Po1 + Poo > 0, suffices for
sufficient cause interaction (Greenland et al., 2008; VanderWeele and Robins, 2007). The assumption
that neither exposure can ever be preventive for any individual is sometimes referred to as a positive
“monotonicity” assumption; it is a strong assumption. In some contexts, it might be plausible. For
example, we would probably never think that smoking is protective for lung cancer for any individual.
There may be some persons for whom smoking causes lung cancer, there may be others for whom
smoking is neutral, but we would never think that smoking prevents lung cancer for anyone (i.e. that
they would not have lung cancer if they smoked, but that they would have lung cancer if they did not
smoke). Thus the positive monotonicity assumption for the effect of smoking on lung cancer may be
plausible. But in other cases the assumption may be less plausible. For example, if we were to consider
the effect of alcohol consumption on stroke, alcohol may be protective for stroke in some persons but
causative for others; the monotonicity assumption would not be plausible here. Positive monotonicity
requires that the effect is never preventive for the outcome for any person in the population.
Importantly, to assess sufficient cause interaction simply by examining whether additive interaction
is positive requires that the effects of both exposures on the outcome be monotonic. This will in many
contexts be a strong assumption, and it is an assumption that is not possible for verify empirically; it
must be established on substantive grounds.

Fortunately, it is also possible to test for sufficient cause interaction even without such monotonicity
assumptions but the standard tests for positive additive interaction no longer suffice. Alternative tests must

10 Formally, we say that the effects of both exposures are unconfounded if the counterfactual outcomes Dg. are independent of
the actual exposures {G,E}; or that the effect of both exposures are unconfounded conditional on covariates C if Dg is
independent of exposures {G, E} conditional on C.
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be used. VanderWeele and Robins (2007, 2008) showed that if the effect of the two exposures were
unconfounded then

P11 — P1o —Por1 >0

would imply the presence of a sufficient cause interaction. This is a stronger condition than regular positive
additive interaction which only requires py; — pio — Po1 +Poo > 0, because, with the condition
P11 — P1o — Po1 > 0, we are no longer adding back in the outcome probability poo for the doubly unexposed
group. This condition for a sufficient cause interaction, without making monotonicity assumptions, thus
does not correspond to, and is stronger than, the regular test for additive interaction, or than simply
examining whether interaction is positive in a statistical model (VanderWeele, 2009b). In these various
cases, the magnitude of the contrast p;; — pio — Po1 + Poo With monotonicity or p;; — p1o — por without
monotonicity in fact gives a lower bound on the prevalence of individuals manifesting sufficient cause
interaction patterns (VanderWeele et al., 2010).

If data are only available on the ratio scale, then if both exposures have positive monotonic effects on
the outcomes, we can test for sufficient cause interaction by the condition RERIzg > O. Likewise, the
condition py; — p1o — po1 > O without imposing monotonicity assumptions can be expressed in terms of
RERIRg as RERIgg > 1; again this is stronger than simply the ordinary condition for additive interaction
RERIRgr > 0. However, RERIRy still can be used in a straightforward way to test for such sufficient cause
interaction by testing whether RERIgg > 1 rather than simply RERIgg > O.

Note that when the empirical conditions above are satisfied, the conclusion is that there are some
individuals for whom D;; =1 and D;g = Dy; = 0; the conclusion is not that all individuals have this
response pattern. Note also that these conditions given here are sufficient but not necessary for sufficient
cause interaction, i.e. if these conditions are satisfied then a sufficient cause interaction must be present,
but if the conditions are not satisfied, then there may or may not be a sufficient cause interaction — one
simply cannot determine this from the data. The conditions given here are the weakest possible empirical
conditions to test for sufficient cause interaction without making further assumptions (VanderWeele and
Richardson, 2012).

VanderWeele (2010a, 2010b) discussed empirical tests for an even stronger notion of interaction. We
might say that there is a “singular” or “epistatic” interaction if there are individuals in the population who
will have the outcome if and only if both exposures are present; in counterfactual notation, that is, there are
individuals for whom Dy; = 1 but Dyg = Dy; = Dog = 0. In the genetics literature, when gene—gene inter-
actions are considered, such response patterns are sometimes called instances of “compositional epistasis™
(Phillips, 2008; Cordell, 2009) and constitute settings in which the effect of one genetic factor is masked
unless the other is present. VanderWeele (2010a, 2010b) noted that if the effects of the two exposures on the
outcome were unconfounded then

Pu — P10 — Po1 — Poo > 0

would imply the presence of such an “epistatic interaction”. Again this is an even stronger notion of
interaction; in this condition for “epistatic interaction” we are now subtracting poo. The condition
P11 — P1o — Po1 — Poo > O expressed in terms of RERIgy is equivalent to RERIgg > 2.

For epistatic interactions, if the effect of at least one of the exposures is positive monotonic (Y is non-
decreasing in at least one of g or e), then p;; — p1o — po1 > O suffices for an epistatic interaction and tests for
RERIggr >1 could be used; if the effects of both exposures are positive and monotonic, then
P11 — P1o — Po1 + Poo > O suffices and tests for RERIzz > 0 could be used to test for an epistatic interaction
(VanderWeele, 2010a, 2010b). These conditions are likewise sufficient but not necessary for an epistatic
interaction; if these conditions are satisfied, then an epistatic interaction must be present, but if the
conditions are not satisfied, then an epistatic interaction may or may not be present. Note also that when
the empirical conditions above are satisfied, the conclusion is that there are some individuals for whom
Dy; = 1 but Dyg = Do; = Dgp = 0; the conclusion is not that all individuals have this response pattern. The
various results are summarized in Table 7.
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Table 7 Relations between the additive relative excess risk due to interaction (RER/) and forms of mechanistic interaction
under different monotonicity assumptions (“S” indicates the presence of a sufficient cause interaction; “E” denotes an epistatic
interaction)

Monotonicity assumption RERIgz > 0 RERIgr > 1 RERIgg > 2
No assumptions about monotonicity — S S,E
One of G or E have positive monotonic effects — S,E S,E
Both G and E have positive monotonic effects S,E S,E S,E

The sufficient conditions given here for mechanistic interaction require that control has been made for
confounding of the effects of both exposures. The sufficient conditions for RERIgg for mechanistic interac-
tion in Table 7 still apply when adjustment is made for confounders, e.g. when the relative excess risk
due to interaction is calculated using logistic regression as described above adjusting for covariates.™

In assessing additive interaction using RERIgg, it thus is useful to examine not only whether the
estimate and confidence interval for RERIRr are greater than O (i.e. whether there is additive interaction)
but also whether the estimate and confidence interval for RERIRy are all greater than 1 or are all greater than
2. This is because RERIgy of this magnitude would provide evidence for mechanistic interaction (sufficient
cause or epistatic interaction) without the need for additional assumptions. The RERIz; scale is in some
sense the natural scale on which to assess mechanistic interaction and has the thresholds of 0, 1, and 2 for
varying degrees of evidence (according to the strength of the assumptions needed for the conclusion). We
noted above that RERIgr cannot be used to assess the magnitude of the underlying additive interaction for
risks, but we see here that although its magnitude does not necessarily correspond to the magnitude of the
additive interaction for risks, the magnitude of RERIzy does give differing degrees of evidence for mechan-
istic interaction.™

As an example, Bhavnani et al. (2012), using age-standardized measures, reported that risk ratios for
diarrheal disease across groups infected with rotavirus and/or Giardia. With the doubly unexposed
group as the reference category, the risk ratio for rotavirus (in the absence of Giardia) is 2.63, the risk
ratio for Giardia (in the absence of rotavirus) is 1.13, and the risk ratio when both rotavirus and Giardia

11 When statistical models are used to adjust for confounding, this requires correct model specification. Within Rothman’s
sufficient cause framework, such statistical models can impose constraints on the sufficient causes which are sometimes
thought undesirable (VanderWeele et al., 2010). In such cases, alternative modeling approaches using weighting or semipara-
metric methods can help relax these modeling assumptions (Vansteelandt et al., 2008, 2012; VanderWeele et al., 2010;
VanderWeele and Vansteelandt, 2011) but are beyond the scope of the current tutorial.

12 Testing for sufficient cause or epistatic interaction can also be done simply by using the interaction parameter of a log-linear
model (or logistic model if odds ratios approximate risk ratios) directly. The log-linear model for risk ratios that includes a
product term takes the form: log{P(Y = 1|G = g,E = e)} = f, + 18 + p,e + f;eg. Here, if both G and E have positive monotonic
effects on Y, then the condition g5 > 0 implies both a sufficient cause interaction and an epistatic interaction (VanderWeele,
2009b, 2010b). If at least one of G or E have positive monotonic effects on Y, then, provided both the main effects of G and E on
Y are non-negative (i.e. #; > 0 and 8, > 0), the condition ; > log(2) implies both a sufficient cause interaction and an epistatic
interaction (VanderWeele, 2009b, 2010b). Since €’> = RR;;/(RRioRRy;) this is just equivalent to the condition for the multi-
plicative risk ratio interaction RRy; /(RR1oRRo;) > 2. If neither G nor E has positive monotonic effects on Y, then, provided both
the main effects of G and E on Y are non-negative (i.e. 8, > 0 and 8, > 0), the condition ; > log(2) implies a sufficient cause
interaction and the condition f; > log(3) implies an epistatic interaction (VanderWeele, 2009b, 2010b). Thus, once again,
without monotonicity assumptions a positive statistical multiplicative interaction, #; > 0, alone does not suffice and we need
stronger conditions e.g. f; > log(2) or B; > log(3). However, if we can estimate the parameters of the multiplicative model
B1. B, 3 then, as described above, we can calculate the relative excess risk due to interaction by
RERIgg = ehthrths _ e — ef2 11 and we would be better off testing for sufficient cause synerigsm using the conditions
RERIgg > 0 or RERIgg > 1 or RERIgg > 2, respectively, as these conditions are more often satisfied than those for the multi-
plicative interaction (85 > 0, 85 > log(2), and S5 > log(2)); the multiplicative interaction conditions imply the relative excess
risk due to interaction conditions, but not vice versa. The comments here for statistical interaction for risk ratios in a log-linear
model pertain also approximately to statistical interaction for odds ratios in a logistic regression model when the outcome is
rare.
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are present is 10.72. This gives RERIzz = 10.72 — 2.63 — 1.13 + 1 = 7.96 (95% CI: 3.13, 18.92). The value of
RERIRg and its entire 95% confidence interval exceed the value 2, suggesting strong evidence for
mechanistic interaction (both “sufficient cause” and “epistatic” interaction) even in the absence of
any monotonicity assumptions.

Although it is beyond the scope of the current paper extensions of these ideas are available for
exposures with more than two levels (VanderWeele, 2010a, 2010b, 2010d) and for multi-way interactions
between three or more exposures (VanderWeele and Robins, 2008; VanderWeele and Richardson, 2012) as
well as for settings with causal antagonism in which the presence of one exposure may block the operation
of the other (VanderWeele and Knol, 2011b) See VanderWeele (2014b) for an overview. In the next section,
we will discuss how even these so-called mechanistic interactions (sufficient cause or epistatic interactions)
considered here give limited information about the underlying biology.

2 Part II: Limitations, extensions, study design, and properties of
interaction analysis

2.1 Limits of inference concerning biology

Although tests for sufficient cause interaction, like those considered in the previous section, can shed light
on whether there are individuals for whom the outcome would occur if both exposures are present but not if
just one or the other is present, it should be noted, that even such “mechanistic interaction”, does not imply
that the two exposures are physically interacting in any real sense (Siemiatycki and Thomas, 1981;
Thompson, 1991; VanderWeele and Robins, 2007; Phillips, 2008; Cordell, 2009). To see this, suppose that
G; and G, are two genetic factors. Suppose that when G; = 1 protein 1 is not produced and that when G, =1
protein 2 is not produced. Suppose that the outcome D occurs if and only if neither protein 1 nor protein 2 is
present. We then have an epistatic interaction because the outcome occurs if and only if G; =1and G, =1,
but we do not have physical interaction here. It is precisely the absence of the proteins that gives rise to the
outcome; there simply is nothing to physically interact here.

We should thus distinguish between (i) statistical interaction on the one hand and (ii) mechanistic
interaction (e.g. the outcome occurs if both exposures are present but not if just one or the other is present)
on the other, and finally, (iii) “biological” or “functional” interaction in which the two exposures physically
interact to bring about the outcome (Phillips, 2008; Cordell, 2009; VanderWeele, 2010a, 2011a). In the
example just given, we have mechanistic interaction but not “functional” or physical interaction. Thus,
although we can sometimes empirically draw conclusions about mechanistic interaction from data, empiri-
cal tests will not in general allow us to draw conclusions about functional or physical interaction between
exposures and it is important to understand the limits of the conclusions being drawn about these
alternative forms of interaction.

Other examples of the limitation of biologic inference concerning interaction were given by Siemiatycki
and Thomas (1981). Consider, for example, a setting in which for the outcome to occur two stages of disease
development must take place. Several theories for the development of cancer follow this model. Suppose
that the two exposures of interest, G; and G, say, affect different stages: G; acts on stage 1 and G, acts on
stage 2. Suppose also in this example that stage 1 and stage 2 are completely independent of each other.
Assume that the baseline probability of stage 1 occurring is 1% and the baseline rate of stage 2 occurring is
also 1%, so that the baseline likelihood of disease is 0.01%. Suppose that G; increases the probability of
stage 1 occurring from 1% to 2% and G, increases the probability of stage 2 occurring from 1% to 5%.
Suppose, however, that the presence of G, in no way alters the effect of G,’s increasing the probability of
stage 1 occurring from 1% to 2%; i.e. the probability of stage 2 is 1% if G; = 0 and 2% if G; = 2, irrespective
of whether G, is present or absent. Suppose, similarly, that the presence of G; in no way alters the effect of
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G>’s increasing the probability of stage 2 occurring from 1% to 5%. Here then we seem to have no interaction
between G; and G, at the biologic level.

As noted above, if neither exposure is present (G; = 0 and G, = 0), then the risk of stage 1 and stage 2 are
both 1% and the overall likelihood of the outcome is 1% x 1% = 0.01%. If just G, is present (G; = 1and G, = 0),
then the risk of stage 1 is 2% and the risk of stage 2 is 1% and the overall likelihood of the outcome is
2% x 1% = 0.02%. If G; = 0 and G, = 1, then the risk of stage 1 is 1% and the risk of stage 2 is 5% and the
overall likelihood of the outcome is 1% x 5% = 0.05%. If G; = 1 and G, = 1, then the risk of stage 1is 2% and
the risk of stage 2 is 5% and the overall likelihood of the outcome is 2% x 5% = 0.10%. In this example, our

measure of multiplicative interaction is 222% — w = 1. However, our measure of additive interaction is
PioPo1 0402/ﬂ(0.05 0)

P11 — Pio — Po1 + Poo = 0.10% — 0.02% — 0.05% + 0.01% = 0.04% > 0.

We have positive additive interaction but no biologic interaction in this example. Here our conditions for
sufficient cause interaction are satisfied, since

P11 — P1o — Por = 0.10% — 0.02% — 0.05% = 0.03% > 0,
and even our conditions for “epistatic” or “singular” interaction,
P11 — P1o — Po1 — Poo = 0.10% — 0.02% — 0.05% — 0.01% = 0.02% > 0,

are also satisfied. But again we saw that there was no interaction between G; and G, at the biologic level.
How are we to make sense of this? What we can conclude from the condition for a epistatic or singular
interaction, say, are that there are some individuals who would have the outcome if both exposures were
present but who would not if just one or the other or neither exposure were present. But we see here that
not even this necessarily indicates interaction at some fundamental biologic level. We have this form of
“singular” or “sufficient cause” interaction because, if both exposures are present, 0.10% have the outcome
and this cannot be accounted by those individuals whose outcome only required the first exposure (0.02%)
or only the second (0.05%) or who required neither (0.01%). Even if these three groups were mutually
exclusive, they would not account for the risk of 0.10% that occurs if both exposures are present
(0.10% — (0.02% + 0.05% + 0.01%) = 0.02% > 0). There must be some individuals for whom the outcome
occurs if and only if both exposures are present. But again, this does not, as this example shows, indicate
biologic interaction in any fundamental biologic sense."

We can assess statistical interaction (on any scale we choose), we can assess additive interaction to
determine how best to allocate interventions, and we can assess “sufficient cause” or “epistatic/singular”
interaction to determine whether there are individuals who would have the outcome if both exposures were
present but not if only one or the other were present. All of these may provide some insight into the
underlying biology, but we have no way of going from any of these forms of interaction which we can
assess with data directly to the underlying biology itself.

13 On the basis of these and other similar examples, Thompson (1991) suggested that if an outcome required stages and one
exposure affected the first stage and another exposure affected the second stage (a “multi-stage model”), then if there were no
biologic interaction, we would expect a multiplicative model. Likewise he suggested that if the occurrence of a single adverse
event was sufficient for the development of the disease (a “single-hit model”) then the absence of biologic interaction we would
expect an additive model. Finally, he suggested that if the outcome occurred if an individual failed to experience any of one or
more occurrences of a beneficial event (a “no-hit model”, cf. Walter and Holford, 1978), then the model should again be
multiplicative. While such heuristics may be of some use, if we do find that an additive model fits well it is not necessarily the
case that we have a “single-hit model” with no biologic interaction; it could equally be the case that we have a “multi-stage
model” in which the factors operate antagonistically. Or if we were to find that the multiplicative model fit well, this does not
necessarily indicate a “multi-stage model” with no biologic interaction, but could also be a “single-hit model” in which there
was biologic interaction. We cannot in general draw conclusions about the type of biologic model and the presence or absence
of biologic interaction simply from the statistical models we use. If we find positive multiplicative interaction, this could be a
“multi-stage model” or a “no-hit” model with biologic interaction, or it could be a “single-hit model” with biologic interaction,
or it could be a more complicated model with no biologic interaction whatsoever. We cannot tell from the data alone. Our
inferences about biology are limited.
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In some eatrlier literature, sufficient cause synergism was sometimes earlier referred to as “biologic
interaction” (e.g. Rothman and Greenland, 1998); sometimes even just additive interaction was even
referred to as “biologic interaction” (e.g. Andersson et al., 2005). However, as we have seen in the examples
above, neither statistical additive interaction nor even sufficient cause interaction or epistatic interaction
necessarily tells us anything about physical or functional interactions. Statistical analyses can only tell us
limited information about the underlying biology (Siemiatycki and Thomas, 1981; Thompson, 1991;
Rothman and Greenland, 1998; Cordell, 2002). Because of this there has been a suggestion to move away
from the use “biologic interaction” for sufficient cause interaction or synergism in the sufficient cause
framework (cf. Lawlor, 2011; VanderWeele, 2011a). It may be more appropriate to refer to these sufficient
cause or epistatic interactions as “mechanistic interactions”; these are still cases in which both exposures
together turn the outcome “on” and the removal of one turns the outcome “off” and thus the “mechanistic”
description seems potentially appropriate. If even this is thought to be language that is too strong (if
“mechanistic” is still thought to indicate biology rather than indicating “on” and “off”), then simply using
the terms “sufficient cause interaction” or “singular interaction” may be best.

2.2 Attributing effects to interactions
2.2.1 Attributing joint effects to interactions

At the beginning of the tutorial, we discussed different measures concerning the proportion of risk or effect
attributable to interaction. In fact, we can actually decompose the joint effects of the two exposures, G and
E, into three components: (i) the effect due to G alone, (ii) the effect due to E alone, and (iii) the effect due to
their interaction. On the risk difference scale this decomposition is

P11 — Poo = (P10 — Poo) + (Po1 — Poo) + (P11 — P1o — Po1 + Poo)-

where the first component, (p10 — Poo), is the effect due to G alone, the second component, (po1 — Poo), is
the effect due to E alone, and the final component, (p;; — p1o — Po1 + Poo), is just the standard additive

interaction. We could then also compute the proportion of the joint effect due to G alone, gifjl’;gg)) ,dueto E

alone, a=Pw) " 4nd due to their interaction, Pu=Po—PotPo)
(Pn—poo) (P11—Poo)
We can also carry out a similar decomposition on the ratio scale using excess relative risks. We can
decompose the excess relative risk for both exposures, RR;; — 1, into the excess relative risk for G alone, for
E alone, and the excess relative risk due to interaction, RERI. Specifically we have (VanderWeele and

Tchetgen Tchetgen, 2014)
RRy — 1= (RRyo — 1) + (RRo; — 1) + RERIzg.

RRyp—1
> RRj—1

We could then likewise compute the proportion of the effect due to G alone , due to E alone, };f;‘;:j,
and due to their interaction %.”‘

14 As discussed at the beginning of the tutorial, Rothman (1986) considered a measure of interaction that he called the

attributable proportion, defined as %’i’; the denominator Rothman used was RR;;. The measure was meant to capture the

proportion of the disease in the doubly exposed group that is due to the interaction. Rothman (1986) also considered an

alternative measure, R’;’fﬂ 1» which captured the proportion of the effect of both exposures on the additive scale that is due to

interaction. This latter definition is the measure used in the decomposition here (VanderWeele and Tchetgen Tchetgen, 2014).
Most of the subsequent literature has focused on the former measure; but the latter measure, i.e. using RR;; — 1, as the

denominator in fact has some advantages (VanderWeele, 2013). With Rothman’s primary measure, %’f}’, even if all of the

joint effect were due to interaction so that the effect of G alone and E alone were both risk ratios of 1, i.e. RRjp = 1 and RRy; = 1,

we would nevertheless have that Rothman’s primary attributable proportion measure would be

RERI __ RRiy—RRio—RRy1+1 __ RRy—1-1+1 _
RRy RRy RRy

the attributable proportion measure is still less than 100%. The measure R’;inl does not have this issue. It is 100% when the

%};1 <1i.e. even if the entirety of the joint effect of both exposures were due to interaction,
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Under the logistic regression model
logit{P(D = 1|G = g,E = e,C = )} = o + 118 + 12 + 1388 + 4C. (9]
for an outcome that is rare, the joint effect attributable to G alone, E alone, and to their interaction are given

approximately by:

RRo—1_ en—1
RRy; —1 ~ entntr — 1’

RR01 -1 - e2 —1
RRy; —1  entntrn —1’

RERIgg (eyl+72+73 —eh —e2 4 1)
RR;; —1 - entrtn —1 '

The expressions can be used even when control is made for covariates in the logistic regression.
VanderWeele and Tchetgen Tchetgen (2014) provided SAS and Stata code to do this automatically and to
calculate standard errors and confidence intervals for the proportions and also discussed extensions to
exposures that are not binary. Note that to interpret the effects above causally, one would have to control
for confounding of the relationships of both exposures with the outcome.

We illustrate the various decompositions with an example from genetic epidemiology presented by
VanderWeele and Tchetgen Tchetgen (2014) using data from a case—control study of lung cancer at
Massachusetts General Hospital of 1,836 cases and 1,452 controls (Miller et al., 2002). The study included
information on smoking and genotype information on locus 15¢25.1. For simplicity, we will code the
exposure as binary so that smoking is ever versus never and the genetic variant is a comparison of 0
versus 1/2 T alleles at 1s8034191. Analyses were restricted to Caucasians, and covariate data include age
(continuous), gender, and educational history (college degree or more, yes/no). If we proceed with the
decomposition of the joint effect, then the proportions attributable to G alone, E alone, and to their
interaction are

RRyp —1
— 0508 Cl: —6.2%,7.
RR. 1 9%(95% 6.2%,7.7%),
RRo; — 1
SO~ 51.4%(95%Cl : 33.4%, 69.4%),
RR; —1

RERI

RR 1~ 478%(95%C1 : 33.3%,623%).

main effects of G alone and E alone were both risk ratios of 1 i.e. when the entirety of the joint effect is due to interaction. The

HeRL captures the proportion of the joint effect attributable to interaction. The attributable proportion of joint effects

RERI
RRy;-1°

measure because, in the presence of covariates, if the risks follow a linear risk model that is additive in the covariates,
P(D=1/G=g,E=e,C=c) =00+ mug + ae + azge + a,c, then, although the additive interaction, pi1 — pi1o — Po1 + Poo = 03,

; P ; ; RERI _ a3
does not vary across strata of the covariates, Rothman’s primary attributable proportion measure, T —— does

vary across strata of the covariates. Skrondal also noted that RERI itself, which would be given here by RERI = aoffah 2> likewise

measure

measure, is also attractive from another standpoint. Skrondal (2003) criticized Rothman’s original attributable proportion

depends on the covariates. However, the measure of the proportion of the joint effects attributable to interaction,

PRl = a7 » does not vary with the covariates and thus circumvents Skrondal’s criticism. Likewise, the other two compo-

nents in the decomposition: fre— — —a BRy-1_ __a

-1 7 atortos RRy-1 " aytop+as
the joint effect of the two exposures into three components, (i) the effect due to G alone, (ii) the effect due to E alone, and (iii)
the effect due to their interaction, thus entirely circumvents Skrondal’s critique of RERI and Rothman’s primary attributable

proportion measure, %ETflI .

also do not depend on the covariates. The decomposition of
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Almost none of the joint effect (comparing both G and E present to both absent) is due to the effect of G
in the absence of E, about 51% is due to E is the absence of G and about 48% is due to the interaction
between G and E.

2.2.2 Attributing total effects to interactions

If the distribution of two exposures G and E are independent (i.e. uncorrelated) in the population, then we
can also decompose the total effect of one of the exposures (e.g. total effect of E) into two components
(VanderWeele and Tchetgen Tchetgen, 2014). If we let p, denote P(D = 1|E = e), i.e. the probability that D=1
when E = e then we have

(De=1 — Pe=0) = (Po1 — Poo) + (P11 — P10 — Po1 +Poo)P(G =1).

This decomposes the overall effect of E on Y into two pieces: the first piece is the conditional effect of E on Y
when G = 0, the second piece is the standard additive interaction, (p11 — P10 — Po1 + Poo), multiplied by the
probability that P(G = 1). In some sense then we can attribute the total effect of E on Y to the part that
would be present still if G were O (this is po; — poo) and to a part that has to do with the interaction between
G and E (this is (p11 — p1o — Po1 + Poo)P(G = 1)). If we could remove the genetic exposure, i.e. set it to 0, we
would remove the part that is due to the interaction and we be left with only po; — poo. Since we can do this
decomposition we might define a quantity pAls_o(E) as the proportion of the overall effect of E that is
attributable to interaction, with a reference category for the genetic exposure of G = 0, as

_ (P11 — P10 — Po1 + Poo)P(G =1)

pla-o(E): (et — Peco)
e= e=

The remaining portion (po; — Poo)/(Pe=1 — Pe=o) is the proportion of the effect of E that would remain if G
were fixed to 0. VanderWeele and Tchetgen Tchetgen (2014) provided SAS and Stata code to do this
automatically and handle more general cases and models. Note that the three-way decomposition above
for joint effects did not require that the exposures be independent of one another. However, the two-way
decomposition for a total effect given here in general assumes that the exposures are independent.
VanderWeele and Tchetgen Tchetgen (2014) and VanderWeele (2014a) also discussed similar, but more
complex, decompositions when the two exposures, G and E, are correlated.

As already discussed in this tutorial, one of the motivations for studying interaction is to identify which
subgroups would benefit most from intervention when resources are limited. In settings in which it is not
possible to intervene directly on the primary exposure of interest, one might instead be interested in which
other covariates could be intervened upon to eliminate much or most of the effect of the primary exposure
of interest. The methods here for attributing effects to interactions can be useful in assessing this and
identifying the most relevant covariates for intervention.

2.3 Case-only designs

Another more recent approach concerning statistical interaction is also worth noting. Consider the statis-
tical interaction f; in the log-linear model:

log{P(D =1|G =g,E =e)} = By + p18 + e + fseg.

Suppose now also that the distribution of the two exposures, G and E, are independent in the population.
This assumption may be plausible in many gene—environment interaction studies. Suppose further that
data are only collected on the cases (D = 1). It can be shown that under this independence assumption, the
odds ratio relating G and E among the cases is equal to the interaction measure on the multiplicative scale
B5 (Yang et al., 1999; cf. Piergorsch et al., 1994):



DE GRUYTER T. ). VanderWeele and M. ). Knol: A Tutorial on Interaction =—— 59

P(G=1E=1D=1)/P(G=0E=1D=1)  RRy

P(G=1E=0,D=1)/P(G=0E=0,D=1) RRoRRy; '°

Somewhat surprisingly, to get measures of multiplicative interaction, all that is needed is data on G and E
among the cases. The use of the odds ratio relating G and E among the cases is referred to as the “case-
only” estimator of interaction. With the case-only estimator we can estimate the interaction parameter f;,
but we cannot estimate the main effects of the log-linear regression, 4, and f,.

The case-only estimator depends critically on the assumption that the distribution of the two exposure
are independent in the population and can be quite biased if this assumption is violated (Albert et al.,
2001). However, under this assumption of independence in distribution, the case-only estimator is in fact
more efficient than using the standard estimate from a log-linear regression (Yang et al., 1997).

The same result holds for statistical interaction in logistic regression

logit{P(D =1|G = g,E =€)} = yo + 18 + 1,€ + 138

under the assumption that the outcome is rare (Piergorsch et al., 1994). The result for log-linear models does
not require a rare outcome. Sometimes, for logistic regression, the independence assumption is articulated
as one of independence of G and E among the non-cases. For a rare outcome, this is approximately
equivalent to independence in the population.

The result also holds for log-linear or logistic regression if we control for covariates. The conditional
independence assumption is then that the distributions of G and E are independent conditional on C.
Estimates and confidence intervals for the case-only estimator can be obtained by running a logistic
regression of G on E and C among the cases:

logit{P(G =1|E =e,C =c,D =1)} = Oy + 61e + Oc.

The coefficient and confidence interval for 0; in this regression on the cases will equal that of the product
term coefficient in the log-linear model with covariates provided the distributions of G and E are indepen-
dent in the population and will equal the product term coefficient in the logistic model with covariates, in
addition, that the outcome is rare.

Note that in all of these cases, to interpret the multiplicative interaction parameter estimate from the
statistical model as causal interaction on a multiplicative scale, it would be necessary to assume that
the effects of both exposures on the outcome are unconfounded (conditional on covariates C). To interpret the
parameter estimate as a measure of effect heterogeneity on the multiplicative scale, it would be necessary to
assume that the effect of one of the exposures on the outcome is unconfounded (conditional on covariates C).Ina
case-only study, simply assuming that the effect of one exposure on the other exposure is unconfounded does not
suffice to give a causal interpretation for the effects of either or both exposures on the outcome Y.

As an example, Bennet et al. (1999) used data on non-smoking lung cancer cases and reported exposure
status for GSTM1 genotype and passive smoking as in Table 8.

Table 8 Number of cases by genotype and smoking status
(Bennett et al., 1999)

No smoking Smoking
GSTM1 present, G=0 28 14
GSTM1 absent, G=1 27 37

Using data only on the cases we have that the estimate of multiplicative interaction is

RRy  P(G=1E=1,D=1)/P(G=0[E=1D=1) 37/14

= = =274
RRoRRyy P(G=1E=0,D=1)/P(G=0E=0,D=1) 27/28
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When adjusted also for age, radon exposure, saturated fat intake, and vegetable intake using logistic
regression, the case-only estimate of multiplicative interaction is 2.6 (95% CI: 1.1-6.1). There is evidence
here for multiplicative interaction between passive smoking and the absence of GSTM1 on lung cancer.

VanderWeele et al. (2010) discussed using the case-only estimator to assess mechanistic interaction and
showed that if the main effects of both exposures are non-negative (which cannot be assessed directly in a
case-only study but could be evaluated on substantive grounds), then a sufficient cause interaction is
present if 6, > log(2) without any individual level monotonicity assumptions, or if §; > O when it can be
assumed that both exposures have positive monotonic effects on the outcome. They also noted that if the
main effects of both exposures are non-negative then an epistatic interaction is present if 8; > log(3)
without any individual level monotonicity assumptions, or if 6; > log(2) and at least one of the two
exposures has a positive monotonic effect, or if §; > 0 and both exposures have positive monotonic effects.

2.4 Interactions for continuous outcomes

When continuous outcomes are in view, linear and log-linear regression can still be used to estimate
measures of additive and multiplicative interaction, respectively. For additive interaction, a linear regres-
sion model for the continuous outcomes could be used

E(DIG=g8,E=e,C=c)=ao+ g+ 02e + 0ze8 + a,cC,

and a3 can be taken as a measure of additive interaction. This parameter is equal to the additive interaction
measure:

a3 =E(D|G=1,E=1,C=c)—E(D|G=1,E=0,C=c)

—E(D|G=0,E=1,C=c)+ED|G=0,E=0,C=c).
For multiplicative interaction, a log-linear regression model for the continuous outcomes could be used

log{E(D|G =g,E =e,C=c)} =, + S8 + f.e + Sz + B,

and f; can be taken as a measure of multiplicative interaction. This parameter, when exponentiated, is
equal to the multiplicative interaction measure:

E(D|G=1,E=1,C=c)/E(D|G=1,E=0,C =)

3 =
¢ ED|G=0,E=1,C=¢)/E(D[G=0,E=0,C=c)’

Note that with a continuous outcome most of the arguments for preferring one scale to another are no
longer applicable. With a continuous outcome, we generally no longer run into convergence problems for
the additive scale. But the argument for the public health significance of the additive scale is not as
applicable for a continuous outcome as we are no longer analyzing discrete events. Moreover, with a
continuous outcome, it is not clear that the additive scale gives any insight into mechanistic interaction.
Whether additive or multiplicative scales are to be preferred for a continuous outcome will generally
depend on the distribution of the outcome data.

2.5 Identifying subgroups to target treatment using multiple covariates

Thus far our focus has been on estimating and interpreting interactions; we have focused on binary exposures
but have also briefly considered ordinal or continuous exposures. As we had noted above, one motivation for
examining interaction is determining whether a particular intervention might be more effective for one
subgroup than another. It was noted that assessing interaction on the additive scale was most important
for this purpose. This motivation does, however, raise the question as to how to choose the variable or
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variables that are to define subgroups. Most of our discussion has presupposed that we have a particular
secondary variable in mind which will define subgroups and for which we will examine whether there is effect
heterogeneity across subgroups. In some settings, data on many such variables that could potentially define
subgroups may be available. One option would then be to use each of these and see if any of them are such
that there is evidence for substantial effect heterogeneity. A downside of this approach is that by testing for
effect heterogeneity across many variables, we are more likely to find spurious results suggesting effect
heterogeneity by chance. We would need to correct for such “multiple testing” to mitigate this possibility, and
this is often done by using a Bonferroni correction in which the p-value cutoff (typically 0.05) is divided by the
number of tests conducted to give a more stringent threshold. An alternative approach and one that is often
advocated in the literature is to decide in advance, based on substantive knowledge, which factor or factors
are thought most likely to show evidence for effect heterogeneity and test for these alone.

An additional complication arises when the variable that is going to define subgroups is continuous. One
might then have to decide what cutoff of the continuous variable is to be used in defining subgroups. One
might also be interested in whether there is in some sense an optimal cutoff of such a continuous variable
such that whenever the variable is above that level it is best to treat. Methods to address this type of question
are now available for a single continuous variable (Bonetti and Gelber, 2000, 2005; Song and Pepe, 2004).

However, further complications arise when one is interested in using multiple continuous or categorical
variables simultaneously. An even more general approach involves forming anticipated “effect scores” for
each and every person in a sample or population based on many baseline covariates and then targeting
treatment to those above a certain “effect score” threshold. One approach to forming such effect scores is to
fit a regression model for the outcome on all or several covariates for the treated or exposed subjects and
then to fit a separate model for the untreated or unexposed subjects. For each person in the sample one can
then use the two models, once they are fit to the data, to get a predicted outcome (or probability of the
outcome) under exposure and a predicted outcome (or probability of the outcome) under control. The
difference between these two predicted outcomes would then be the individual “effect score.” One might
then consider targeting treatment to those only above a certain threshold. This approach has the advantage
of being able to incorporate information from many different covariates in defining subgroups to try to
optimize the effect of treatment. It would even be possible to compare different models for the outcome
under the exposed and control conditions, or different sets of covariates, in these models, to see which has
the “effect scores” that best allows one to predict the outcome and target subpopulations (Zhao et al., 2013).

The approach is appealing and intuitive. Several complications do, however, arise in trying to make
inferences in this manner, though methods have been developing to help address these. One complication
is “overfitting”: if the same data are used to fit the models and to evaluate which of the effect scores, and
models, and covariates, have the best predictive properties in forming subgroups, then the performance in a
different sample might not be very good. Because of the potential for overfitting, the evaluation of the effect
scores and models and covariates may be misleading because the model parameters were specifically
estimated to fit the available data as best as possible, and if the same parameters were used to get predicted
outcomes in a different sample drawn from the same population, its performance would not be as good.
Zhao et al. (2013) have proposed a cross-validation procedure which involves splitting the sample into a
training dataset (which is used to fit the models) and an evaluation dataset (which is used to evaluate and
compare effects scores and models and covariates) to address this problem. Based on simulations they
recommend using 4/5 of the data to fit the models and 1/5 to evaluate the models.

Another complication that can arise with this effect-score approach is that if the models to get predicted
outcomes are not correctly specified then the inferences about the effects for different subgroups defined by
the effect score may be misleading. Cai et al. (2011) have proposed a two-stage approach which helps
address this issue. They recommend fitting parametric regression model for the treated and control subjects
to form the effect scores and then to use non-parametric regression to estimate the effects of the treatment
on the outcome across subgroups defined by these effect scores. They describe procedures to carry out
inference and form confidence intervals for the effects across subgroups defined by the effect scores that are
applicable even if the parametric models initially used to form the effect scores are not correctly specified.
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These approaches using multiple covariates to identify subgroups for which to target treatment are
appealing and potentially powerful. More methodological development remains to be done so that these are
easy to implement and optimally choose cutoffs but as these methods develop it is likely they will be very
useful in both observational and experimental research.

2.6 Robustness of interaction to unmeasured confounding and sensitivity analysis

As noted earlier, if we are interested in estimates of causal interaction, e.g. assessing what the effects on the
outcome would be if we were to intervene on both exposures, then we have to control for confounding for
both the exposures. If we have failed to control for confounding, then our interaction estimates may be
biased. There are, however, cases in which unmeasured confounding will not bias estimates of interaction.
Specifically suppose we had an unmeasured confounder U of one of the exposures, say E, then if the
distributions of G and E are independent in the population, and if U does not interact with G on the additive
scale then estimates of additive interaction will be unbiased even if control is not made for U (VanderWeele et
al., 2012) and even though the main effect for E is thus biased. Likewise, if G and E are independent, and if U
does not interact with G on the multiplicative scale then estimates of multiplicative interaction will be
unbiased even if control is not made for U (VanderWeele et al., 2012). Analogous results hold if the
unmeasured confounder affects G rather than E, and analogous results also hold in some cases in which
there are unmeasured confounders of G and of E (VanderWeele et al., 2012); the independence assumption
can also be somewhat relaxed (Tchetgen Tchetgen and VanderWeele, 2012). Finally, if these assumptions of
independence and no interaction between U and G or E fail, then sensitivity analysis techniques for interac-
tion on the additive or multiplicative scale (VanderWeele et al., 2012) can be employed to assess how robust
one’s conclusions about interaction are to unmeasured confounding. Note also that, as discussed above, if
only one of the two exposures is subject to confounding then (even without controlling for such confounding),
interaction estimates can sometimes still be interpreted as measures of effect heterogeneity (i.e. how inter-
ventions on the effect of one exposure vary across strata defined by the second exposure, where we do not
intervene on the second exposure).

2.7 Power and sample size calculations for interaction

In planning a study in which interaction analyses may be of interest, it can be important to consider issues
of power and sample size. Sample size and power calculations have been considered for multiplicative
interaction using logistic regression (Hwang et al., 1994; Foppa and Spiegelman, 1997; Garcia-Closas and
Lubin, 1999; Gauderman, 2002a; Demidenko, 2008), for case-only estimators of interaction (Yang et al.,
1997; VanderWeele, 2011c), for additive interaction (VanderWeele, 2012a), and for multiplicative interaction
using matched case—control data (Gauderman, 2002b). Software is available to implement a number of
these power and sample size calculations. Windows-based, QUANTO, developed by Gauderman is available
at http://hydra.usc.edu/gxe and will implement sample size calculations for likelihood ratio-based tests of
interaction using various study designs. An Excel spreadsheet that can be used for sample size and power
calculations for additive interaction, as well as for multiplicative interaction (on the risk ratio or odds scale
or using a case-only estimator), for cohort or case—control data is given in VanderWeele (2012a). Appendix
2 of that paper provides a guide to the use of these spreadsheets.

A few patterns also merit comment and can be useful to consider when planning studies for interaction.
First, in general, larger sample sizes are needed to be able to detect significant interaction than to simply
detect significant overall effects. Second, when the independence assumption holds, the case-only estima-
tor of multiplicative interaction is more powerful than the estimator from logistic regression (Yang et al.,
1997). Third, for the classical interaction pattern of positive main effects for both exposures and positive
interaction, the test for additive interaction is in general more powerful than the test for multiplicative
interaction (Greenland, 1983; VanderWeele, 2012a).
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3 Conclusions

In this tutorial, we have provided an introduction to the measures of, estimation procedures for, and
interpretation relevant to interaction analyses. We have considered both additive and multiplicative measures
and discussed the relative merits of each, as well as their relation to statistical models, along with case-only
estimators to estimate multiplicative interaction. We have discussed confounding control and the interpreta-
tion of interaction analyses. We have also discussed the stronger conditions which are needed for a mechan-
istic interpretation of interactions. We have commented on extensions to continuous outcomes, on qualitative
interaction, and on the informative presentation of interaction analyses and have given a brief summary of
resources available for sample size and power calculations for interaction analyses.

There are a number of issues that we have not been able to touch upon in this tutorial. We have focused
here on binary outcomes. Similar issues concerning additive versus multiplicative interaction are also relevant
for time-to-event outcomes: Li and Chambless (2007) discussed additive interaction for the proportional
hazard models; VanderWeele (2011b) discussed mechanistic interpretation of such additive interactions in
time-to-event models; Rod et al. (2012) discussed interaction analysis in additive hazard models. Some of the
recent research on interaction concern methods to robustly estimate interaction even if models for the main
effects are misspecified (Vansteelandt et al., 2008, 2012; Tchetgen Tchetgen, 2010; Tchetgen Tchetgen and
Robins, 2010). Another group of papers has examined methods to try to better exploit the conditional
independence assumption of the case-only estimator when data are also available on controls (Chatterjee
and Carroll, 2005; Mukherjee et al., 2007; Han et al., 2012) or methods that attempt to exploit the conditional
independence assumption while still being at least partially protected against possible violations of this
assumption (Mukherjee and Chatterjee, 2008; Dai et al., 2012). Methods are also available to jointly test a main
effect and an interaction (Chatterjee et al., 2006; Kraft et al., 2007; Maity et al., 2009) so as to attempt to
leverage potential interaction to be able to more powerfully detect genetic associations. Other work has
examined methods to estimate interaction in family-based genetic studies design (Umbach and Weinberg,
2000; Lake and Laird, 2004; Hoffmann et al., 2009; Weinberg et al., 2011). Recently there has also been
considerable interest in the challenges of assessing interaction in genome-wide-association studies when
multiple comparison problems are present (Kraft, 2004; Gayan et al., 2008; Khoury and Wacholder, 2009;
Murcray et al., 2009; Pierce and Ahsan, 2010; Thomas, 2010). In some settings exposures may vary over time
and new methods have been developing to assess effect modification by time-varying covariates and/or
exposures (Petersen et al., 2007; Robins et al., 2007; VanderWeele et al., 2010; Almirall et al., 2010). Further
literature has noted that in many settings at least when the two exposures are independent in distribution,
interaction may be robust to measurement error (Garcia-Closas et al., 1998; Zhang et al., 2008; Cheng and Lin,
2009; Lindstr6m et al., 2009; Tchetgen Tchetgen and Kraft, 2011; VanderWeele, 2012b) even when such
sources of bias render estimates of main effect invalid. Some of these topics are described in textbook form
elsewhere (VanderWeele, 2014b). We have not been able to describe all of these methods and developments
in this paper but we hope that the interested reader will consult the relevant literature and we hope also that
this tutorial has provided a useful introduction to how to carry out and interpret analyses of interaction.

Appendix 1: SAS code for additive interaction estimates and
confidence intervals

SAS code for additive interaction for binary exposures

Suppose we have a dataset named “mydata” with outcome variable “d”, exposure variables “g” and “e”,
and three covariates “c1”, “c2”, and “c3”. To calculate the relative excess risk due to interaction we can run
a standard logistic regression in SAS using proc logistic where we add “outest = myoutput covout” to the
procedure statement and then we also run the code that follows. The output will include the estimate of
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RERI, its standard error, and a 95% confidence interval. Note that the first three independent variables in
the model statement must be the two exposures, and their interaction or the code will not work (the other
covariates can be entered in any order). Note also that if the class statement is used for proc logistic for
categorical confounders, the exposures must NOT be included in the class statement or it will reverse the
coding of the exposures and get the wrong results.

proc logistic descending data=mydata outest=myoutput covout;
model d=ge g*eclc2c3;
run;

data rerioutput;
set myoutput;
arraymm {*} _numeric_;
bO=1lag4 (mm([1]);
bl=1lag4 (mm[2])
b2=1lag4 (mm[3])
b3=1ag4d (mm[4])
2]
1)

4

14

) ;

4

vlil=1lag2 (mm[
vi2=lag(mm[2

v13=mm[2];
v22=1ag(mm[3]);
v23=mm[3];

v33=mm[4];
kl=exp(bl+b2+b3)-exp(bl);
k2=exp(bl+b2+b3)-exp(b2);
k3=exp(bl+b2+b3);
vrieri=v11*k1*k14+v22*k2*k2+ v33*k3*k3+2*v12*k1*k2+2*v13*k1*k3
+ 2*v23*k2*k3;
reri=exp(bl+b2+b3)-exp(bl)-exp(b2)+1;
se_reri=sqrt(vreri);
ci95 l=reri-1.96*se_reri;
ci95 u=reri+1.96*se_reri;
keep rerise_rerici95_1ci95_u;
if _n_ =5;
run;

proc print data=rerioutput;
var rerise_rerici95 1 c¢ci95 u;
run;

SAS code for additive interaction for ordinal and continuous exposures

We can adapt this code also to calculate RERI for exposures which are ordinal or continuous. Suppose we
wish to calculate the relative excess risk due to interaction comparing two different levels of the first
exposure “g”, say level 0 to level 2, and two different levels of our second exposure “e”, say level 5 to level
25. We could then use the code below. Mathematical justification is given in the online supplement to this
tutorial. In the code below the user must input the two levels being compared for both exposures at the
beginning of the data step, e.g. “gl=2; g0=0; el =25; e0=5;" or whatever values are of interest in
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comparing. Note that if the user fixes “g1 =1; g0 =0; el =1; e0 = 0;” then this will give the same output as
the previous code above for binary exposures. Note that the first three independent variables in the model
statement must be the two exposures and their interaction or the code will not work (the other covariates
can be entered in any order). Note also that if the class statement is used for proc logistic for categorical
confounders, the exposures must NOT be included in the class statement or it will reverse the coding of the
exposures and get the wrong results.

proc logistic descending data=mydata outest=myoutput covout;
model d=ge g*eclc2c3;
run;

data rerioutput;
set myoutput;
gl=2;
g0=0;
el=25;
e0=5;
arraymm {*} _numeric_;

kl=(gl-g0)*exp((gl-g0)*bl+ (el-e0)*b2+ (gl*el-g0*e0)*b3)
—(gl-g0)*exp((gl-g0)*bl+ (gl-g0)*e0*b3);

k2=(el-e0)*exp((gl-g0)*bl+ (el-e0)*b2+ (gl*el-g0*e0)*b3)
—(el-e0)*exp((el-e0)*b2+ (el-e0)*g0*b3) ;

k3=(gl*el-g0*e0)*exp((gl-g0)*bl+ (el-e0)*b2+ (gl*el-g0*e0)*b3)
—(gl-g0)*eO0*exp((gl-g0)*bl+ (gl-g0) *e0*b3)
—(el-e0)*g0*exp((el-e0)*b2+ (el-e0)*g0*b3);

vieri=v11*k1*k1+4+v22%k2%k2 +v33*k3*k34+2%v12%k1*k2+2*v13*k1*k3
+ 2*v23*k2*k3;

reri=exp((gl-g0)*bl+ (el-e0)*b2+ (gl*el-g0*e0)*b3)
—exp((gl-g0)*bl+ (gl-g0)*e0*b3)
—exp((el-e0)*b2+ (el-e0)*g0*b3) +1;

se_reri=sqgrt(vreri);

ci95_l=reri-1.96*se_reri;

ci95_u=reri+1.96%*se_reri;

keep rerise_rerici95_1c¢i95_u;

if _n =5;
run;

proc print data=rerioutput;
var reri se_rerici95 1 c¢i95 u;
run;
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SAS code for additive interaction for categorical exposures

For categorical exposures, to obtain estimates and confidence intervals for additive interaction one can
restrict attention to two specific levels of each of the two variables and calculate measures of additive
interaction using the code for binary exposures above. It is possible to proceed in this manner for each
possible comparison of two levels of each of the two exposures. For example, if there were two categorical
variables, A and B, and A had three levels (A1, A2, and A3) and B had four levels (B1, B2, B3, and B4), then
one could assess additive interaction comparing A= A1 and A= A2 and B=B1 and B =B4 by ignoring the
observations with A = A3 and also ignoring those with B=B2 or B=B3 and then using the code for binary
exposures above. Suppose the name of the dataset with the categorical variables was mycatdata. We could
then use the following SAS code:

datamydata;
set mycatdata;
if A="A1l'then g=0;
if A="A2'theng=1;
if B=Bl'thene=0;
if B=B4’thene=1;
if A="Al’or A="A2};
if B=Bl’'or B=‘B4;
run;

The code deletes the observations with A = A3 and those with B = B2 or B= B3 and creates a new dataset only
with values of A which are A1 or A2 and with values of B which are B1 or B4. The code for additive interaction for
binary exposures can then be used directly. We could similarly proceed with any other comparison. We could
compare (A1,A2) and (B1,B2); or (A1,A2) and (B1,B3); or (A1,A3) and (B1,B2); and so on.

Appendix 2: Stata code for additive interaction estimates and
confidence intervals

Stata code for additive interaction for binary exposures

Suppose we have a dataset with outcome variable “d”, exposure variables “g” and “e”, and three covariates
“c1”, “c2”, and “c3”. To calculate the relative excess risk due to interaction we can: create an interaction
variable “Ige”, then run a standard logistic regression in Stata using the logit command, and then use Stata
“nlcom” command in the code that follows. The output will include the estimate of RERI, its standard error,
and a 95% confidence interval.

generate Ige=g*e

logitdgeIgeclc2c3
nlcomexp(_bl[gl+_blel+_bl[Ige])-exp(_blgl)-exp(_blel)+1

Stata code for additive interaction for ordinal and continuous exposures

We can also calculate RERI using Stata for exposures which are ordinal or continuous. Suppose we wish to
calculate the relative excess risk due to interaction comparing two different levels of the first exposure “g”,
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say level O to level 2, and two different levels of our second exposure “e”, say level 5 to level 25. We could
then use the code below. In this code the user must specify, in the first four lines of code, the levels of both
exposures that are being compared (in the code below the two levels for “g” are 2 and 0 and the two levels
for “e” are “25” and “5” but these can be changed). If the user fixes g1 =1; g0 =0; el =1; and e0 =0, then
the code will give the same output as the previous code above for binary exposures. The next two lines of
code generate an interaction variable between “g” and “e” and fit the logistic regression model allowing for
interaction. The final line of code uses the “nlcom” command in Stata to obtain RERI. The output will
include the estimate of RERI, its standard error, and a 95% confidence interval.

generate gl=2
generate g0=0

generate el=25
generate e0=5

generate Ige=g*e

logitdgeIgeclc2c3
nlcomexp((gl-g0)*_b[g]
—exp((gl-g0)*_blgl +
(el-e0)*g0*_bl[Igel)

+(el-e0)*_bl[e]l +(gl*el-g0*e0)*_b[Igel)
(gl-g0)*e0*_b[Ige])-exp((el-el0)*_blel+
+1

Stata code for additive interaction for categorical exposures

For categorical exposures, to obtain estimates and confidence intervals for additive interaction one can
restrict attention to two specific levels of each of the two variables and calculate measures of additive
interaction using the code for binary exposures above. It is possible to proceed in this manner for each
possible comparison of two levels of each of the two exposures. For example, if there were two
categorical variables, A and B, and A had three levels (A1, A2, A3) and B had four levels (B1, B2, B3,
B4), then one could assess additive interaction comparing A=Al and A=A2, and B=B1 and B=B4, by
ignoring the observations with A=A3 and also ignoring those with B=B2 or B=B3 and then using
the code for binary exposures above. We could create the restricted dataset using the following Stata
code:

generate g=0 if A== "A1%;
replaceg=1if A== "A23;
generate e=0 if B=="A1;
replacee=1if B== "B4;

The code for additive interaction for binary exposures can then be used directly. The code
creates variables g and e only for those the observations with values of A which are Al or A2 and with values
of B which are Bl or B4. When the code for additive interaction for binary exposures is used it will only
analyze the observations with values of A which are Al or A2 and with values of B which are B1 or B4 since
those with values of A which are A3 or with values of B which are B2 or B3 will have their values of g and of e
missing.

We could similarly proceed with any other comparison. We could compare (A1,A2) and (B1, B2); or (Al,
A2) and (B1, B3); or (A1, A3) and (B1, B2); and so on.
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