Chapter 5, Section 5.4

 

Treatment of Lead Exposed Children Trial (TLC)

Analysis of Response Profiles of Blood Lead Levels 

 

use "tlc.dta"

 

reshape long y, i(id) j(time)

(note: j = 0 1 4 6)

 

Data                               wide   ->   long

-----------------------------------------------------------------------------

Number of obs.                      100   ->     400

Number of variables                   6   ->       4

j variable (4 values)                     ->   time

xij variables:

                           y0 y1 ... y6   ->   y

-----------------------------------------------------------------------------

 

tsset id time

       panel variable:  id (strongly balanced)

        time variable:  time, 0 to 6, but with gaps

                delta:  1 unit

 

label variable y "Blood Lead Level (mcg/dL)"

 

label variable time "Time (in weeks)"

 

ssc install xtgraph

checking xtgraph consistency and verifying not already installed...

installing into c:\ado\plus\...

installation complete.

 

xtgraph y, group(trtav(mean) bar(se)

 

 

 

 

 

xtmixed y i.trt##i.time || id: , noconst /// 

     residuals(unstructured, t(time)) reml

 

Obtaining starting values by EM:

 

Performing gradient-based optimization:

 

Iteration 0:   log restricted-likelihood = -1313.1276  (not concave)

Iteration 1:   log restricted-likelihood = -1239.3532

Iteration 2:   log restricted-likelihood = -1227.6607

Iteration 3:   log restricted-likelihood =   -1210.03

Iteration 4:   log restricted-likelihood = -1208.0677

Iteration 5:   log restricted-likelihood =  -1208.038

Iteration 6:   log restricted-likelihood =  -1208.038

 

Computing standard errors:

 

Mixed-effects REML regression                   Number of obs      =       400

Group variable: id                              Number of groups   =       100

 

                                                Obs per group: min =         4

                                                               avg =       4.0

                                                               max =         4

 

                                                Wald chi2(7)       =    296.50

Log restricted-likelihood =  -1208.038          Prob > chi2        =    0.0000

 

------------------------------------------------------------------------------

           y |      Coef.   StdErr.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       1.trt |       .268   1.004503     0.27   0.790     -1.70079     2.23679

             |

        time |

          1  |     -1.612   .7919167    -2.04   0.042    -3.164128   -.0598719

          4  |     -2.202   .8149182    -2.70   0.007     -3.79921   -.6047895

          6  |     -2.626    .888521    -2.96   0.003    -4.367469   -.8845307

             |

    trt#time |

        1 1  |    -11.406   1.119939   -10.18   0.000    -13.60104   -9.210959

        1 4  |     -8.824   1.152468    -7.66   0.000     -11.0828   -6.565203

        1 6  |     -3.152   1.256559    -2.51   0.012    -5.614809   -.6891904

             |

       _cons |     26.272   .7102911    36.99   0.000     24.87985    27.66415

------------------------------------------------------------------------------

 

------------------------------------------------------------------------------

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]

-----------------------------+------------------------------------------------

id:                  (empty) |

-----------------------------+------------------------------------------------

Residual: Unstructured       |

                      sd(e0) |   5.022517   .3587505      4.366379    5.777253

                      sd(e1) |   6.659261   .4756592      5.789302    7.659948

                      sd(e4) |   6.883155   .4916517      5.983946    7.917487

                      sd(e6) |   7.658394   .5470263      6.657908    8.809223

                 corr(e0,e1) |   .5712872   .0680466      .4230873    .6897174

                 corr(e0,e4) |   .5698299   .0682146      .4213117     .688583

                 corr(e0,e6) |   .5771983   .0673609      .4303008    .6943135

                 corr(e1,e4) |   .7752546   .0403029      .6833543    .8429708

                 corr(e1,e6) |   .5818712   .0668137      .4360169    .6979398

                 corr(e4,e6) |   .5808796   .0669303      .4348027    .6971709

------------------------------------------------------------------------------

LR test vs. linear regression:       chi2(9) =   210.18   Prob > chi2 = 0.0000

 

Note: The reported degrees of freedom assumes the null hypothesis is not on the

      boundary of the parameter space.  If this is not true, then the reported test is

      conservative.

 

test (i1.trt#i1.time) (i1.trt#i4.time) (i1.trt#i6.time)

 

 ( 1)  [y]1.trt#1.time = 0

 ( 2)  [y]1.trt#4.time = 0

 ( 3)  [y]1.trt#6.time = 0

 

           chi2(  3) =  107.79

         Prob > chi2 =    0.0000