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Introduction

Longitudinal Studies: Studies in which individuals are measured repeatedly
through time.

This course will cover the analysis and interpretation of results from
longitudinal studies.

Emphasis will be on model development, use of statistical software, and
interpretation of results.

Theoretical basis for results mentioned but not developed.

No calculus or matrix algebra is assumed.
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Features of Longitudinal Data

Defining feature of longitudinal studies is that measurements of the same
individuals are taken repeatedly through time.

Longitudinal studies allow direct study of change over time.

Objective: primary goal is to characterize the change in response over time
and the factors that influence change.

With repeated measures on individuals, we can capture within-individual
change.

Note: measurements in a longitudinal study are commensurate, i.e., the
same variable is measured repeatedly.
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By comparing each individual’s responses at two or more occasions, a
longitudinal analysis can remove extraneous, but unavoidable, sources of
variability among individuals.

This eliminates major sources of variability or “noise” from the estimation
of within-individual change.

Complications:

(i) repeated measures on individuals are correlated
(ii) variability is often heterogeneous across measurement occasions

4



Longitudinal data require somewhat more sophisticated statistical
techniques because the repeated observations are usually (positively)
correlated.

Correlation arises due to repeated measures on the same individuals.

Sequential nature of the measures implies that certain types of correlation
structures are likely to arise.

Correlation must be accounted for in order to obtain valid inferences.

Heterogeneous variability must also be accounted for in order to obtain
valid inferences.
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Relation to Correlated Data

Correlated data commonly arise in many applications.

Longitudinal Studies: designs in which the outcome variable is measured
repeatedly over time.

Repeated Measures Studies: somewhat older terminology applied to
special set of longitudinal designs characterized by measurement at a
common set of occasions (usually in an experimental setting under different
conditions or treatments).

This course will emphasize methods for analyzing and interpreting the
results from longitudinal studies.
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Example 1: Treatment of Lead-Exposed Children Trial

• Exposure to lead during infancy is associated with substantial deficits in
tests of cognitive ability

• Chelation treatment of children with high lead levels usually requires
injections and hospitalization

• A new agent, Succimer, can be given orally

• Randomized trial examining changes in blood lead level during course of
treatment

• 100 children randomized to placebo or Succimer

• Measures of blood lead level at baseline, 1, 4 and 6 weeks
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Table 1: Blood lead levels (µg/dL) at baseline, week 1, week 4, and week 6
for 8 randomly selected children.

ID Groupa Baseline Week 1 Week 4 Week 6
046 P 30.8 26.9 25.8 23.8
149 A 26.5 14.8 19.5 21.0
096 A 25.8 23.0 19.1 23.2
064 P 24.7 24.5 22.0 22.5
050 A 20.4 2.8 3.2 9.4
210 A 20.4 5.4 4.5 11.9
082 P 28.6 20.8 19.2 18.4
121 P 33.7 31.6 28.5 25.1

a P = Placebo; A = Succimer.
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Table 2: Mean blood lead levels (and standard deviation) at baseline, week
1, week 4, and week 6.

Group Baseline Week 1 Week 4 Week 6

Succimer 26.5 13.5 15.5 20.8

(5.0) (7.7) (7.8) (9.2)

Placebo 26.3 24.7 24.1 23.2

(5.0) (5.5) (5.7) (6.2)
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Figure 1: Plot of mean blood lead levels at baseline, week 1, week 4, and
week 6 in the succimer and placebo groups.
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Example 2: Six Cities Study of Air Pollution and

Health

• Longitudinal study designed to characterize lung function growth in
children and adolescents.

• Most children were enrolled between the ages of six and seven and
measurements were obtained annually until graduation from high school.

• Focus on a randomly selected subset of the 300 female participants living
in Topeka, Kansas.

• Response variable: Volume of air exhaled in the first second of spirometry
manoeuvre, FEV1.
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Table 3: Data on age, height, and FEV1 for a randomly selected girl from
the Topeka data set.

Subject ID Age Height Time FEV1

159 6.58 1.13 0.00 1.36
159 7.65 1.19 1.06 1.42
159 12.74 1.49 6.15 2.13
159 13.77 1.53 7.19 2.38
159 14.69 1.55 8.11 2.85
159 15.82 1.56 9.23 3.17
159 16.67 1.57 10.08 2.52
159 17.63 1.57 11.04 3.11

Note: Time represents time since entry to study.
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Figure 2: Timeplot of log(FEV1/height) versus age for 50 randomly selected
girls from the Topeka data set.
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Example 3: Influence of Menarche on Changes in

Body Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Figure 3: Timeplot of percent body fat against age (in years).
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is almost “balanced” if timing of measurement is defined as
time since baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 4: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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Example 4: Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toenail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.
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Example 5: Clinical Trial of Anti-Epileptic Drug

Progabide

Randomized, placebo-controlled study of treatment of epileptic seizures
with progabide.

Patients were randomized to treatment with progabide, or to placebo in
addition to standard therapy.

Outcome variable: Count of number of seizures.

Measurement schedule: Baseline measurement during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Sample size: 28 epileptics on placebo; 31 epileptics on progabide.
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Figure 5: Mean rate of seizures (per week) at baseline, week 2, week 4, week
6, and week 8 in the progabide and placebo groups.
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Terminology

Individuals/Subjects: Participants in a longitudinal study are referred to
as individuals or subjects.

Occasions: In a longitudinal study individuals are measured repeatedly at
different occasions or times.

The number of repeated observations, and their timing, can vary widely
from one longitudinal study to another.

When number and timing of the repeated measurements are the same for
all individuals, study design is said to be “balanced” over time.

Note: Designs can be balanced, although studies may have incompleteness
in data collection.
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Features of Longitudinal Data

In longitudinal studies the outcome variable can be:

- continuous (e.g., blood lead levels)

- binary (e.g., presence/absence of onycholysis)

- count (e.g., number of epileptic seizures)

The data set can be incomplete (missing data/dropout).

Subjects may be measured at different occasions (e.g., due to mistimed
measurements).

In this course we will develop a set of statistical tools that can handle all
of these cases.

Emphasis on concepts, model building, software, and interpretation.
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Organization of Course

1) Introduction to Repeated Measures Analysis
Review of Regression/One-Way ANOVA
Simple Repeated Measures Analysis

Outcome: Continuous
Balanced and complete data
Software: PROC GLM/MIXED in SAS

2) Linear Models for Longitudinal Data
More general approach for fitting linear models to unbalanced,
incomplete longitudinal data.

Outcome: Continuous
Unbalanced and incomplete data
Class of models: Linear models
Software: PROC MIXED in SAS
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Organization of Course (cont.)

3) Generalized Linear Models for Longitudinal Data
Generalizations and extensions to allow fitting of nonlinear
models to discrete longitudinal data.

Outcome: Continuous, binary, count
Class of models: Generalized linear models (e.g. logistic regression)
Software: PROC GENMOD/NLMIXED in SAS

4) Multilevel Models
Methods for fitting mixed linear models to multilevel data

Outcomes: Continuous
Unbalanced two, three, and higher-level data
Software: PROC MIXED in SAS, using multiple

RANDOM statements
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Background Assumed

1) Samples and populations

2) Population values: parameters (Greek)
Sample values: estimates

3) Variables:

Y : Outcome, response, dependent variable
X: Covariates, independent variables

4) Regression Models

Yi = β0 + β1X1i + β2X2i + ei

5) Inference

Estimation, testing, and confidence intervals

6) Multiple linear regression/ANOVA
Multiple logistic regression
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Linear Regression and Analysis of Variance

As background for our discussion of repeated measures and longitudinal
analysis, we review the standard linear regression model for independent
observations.

We discuss maximum likelihood (ML) and least squares estimation.

We also gently introduce some vector and matrix notation.

Finally, we consider the close connection between analysis of variance
(ANOVA) and linear regression.
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Consider a cross-sectional data set of 300 measurements of the logarithm
of FEV1, age, and logarithm of height of children living in Topeka, Kansas.

We will fit a model describing how the value of log(FEV1) varies linearly
with age and log(height).

The children varied in age from 6 to 18 years.

We will fit a multiple linear regression model, estimate the regression
coefficients for age and log(height), and test the hypothesis that these
coefficients are not significantly different from 0.

(Note: See the chapter on multiple regression in the folder Articles on the
course website)
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Structure of Six Cities Data

Subject Height Age Log(FEV1)

48 1.45 11.2991 0.62058
17 1.17 6.6639 0.28518
166 1.19 8.1396 0.14842
81 1.48 15.3347 0.57661
3 1.60 16.0164 1.08519

218 1.35 9.8015 0.50078
80 1.66 18.5270 0.91629
14 1.27 7.4251 0.37156

29



Multiple Linear Regression

Multiple linear regression describes how the expected value (mean) of a
measured variable depends on a set of measured or categorical covariates,
that is, characteristics of the individuals.

Suppose that we have observations on N individuals.

Each individual has a measured outcome,

Yi; i = 1, ..., N

Each observation, Yi, has an associated set of covariates

Xi1, Xi2, ..., Xip
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The linear regression model for Yi can be written as

Yi = β1Xi1 + β2Xi2 + · · ·+ βpXip + ei

Typically, Xi1 = 1 for all individuals, and then β1 is the intercept.

This model says that the expected value of Y (the average for all individuals
with the specified covariate values) varies linearly with the values of the
covariates.

E(Yi|Xi1, . . . , Xip) = µyi|xi1,...,xip = β1Xi1 + β2Xi2 + · · ·+ βpXip

Specifically, an increase of one unit in Xj (while holding the remaining
covariates fixed/constant) produces an increase/decrease of βj in the mean
of Y .
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Assumptions of Multiple Linear Regression

1. Individuals represent a random sample from the population of interest.

2. Independence: Y1, . . . , YN are independent random variables.

3. Linearity: E(Y |X1, . . . , Xp) is a linear function of each of the X’s.

4. Normality: Given X’s, individual observations of the dependent variable,
Yi, have a normal distribution, with means

µy|x1,...,xp = β1X1 + β2X2 + · · ·+ βpXp

5. Homoscedasticity: Var(ei) is constant, σ2

⇒ constant variation about regression line (or “plane”)
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Estimation

Basic Idea: Among all possible estimates (β̂1, . . . , β̂p) of (β1, . . . , βp) choose
the estimates such that the fitted regression model “deviates” the least from
the data.

⇒ Least Squares Estimation

“Deviation” of fitted model from the data is defined as:

N∑
i=1

(Yi − Ŷi)2 =
N∑
i=1

ê2
i

where Ŷi = β̂1Xi1 + β̂2Xi2 + · · ·+ β̂pXip.

Least Squares (LS) estimates are those values that minimize these
deviations, i.e., minimize the residual sums of squares.
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Maximum Likelihood Estimation

Recall: In the multiple regression model, the values of the covariates are
assumed to be fixed.

Only the values of Yi are random.

The probability distribution corresponding to the linear regression model
is given by:

f(yi|Xi1, ..., Xip) =
1√

2πσ2
exp

{
−(yi − [β1Xi1 + · · ·+ βpXip])

2

2σ2

}
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Equivalently, we assume that ei ∼ N(0, σ2)
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Notable Features of the Normal Distribution

f(Yi) is completely determined by (µi, σ2)

f(Yi) depends to a very large extent on

(Yi − µi)2/σ2

The latter can be interpreted as a standardized distance of Yi from µi,
relative to σ2, a measure of the spread of values around µi.
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Maximum Likelihood Estimation

The main idea behind the method of maximum likelihood (ML) is really
quite simple and conveyed by its name:

Use as estimates of β1, ..., βp (and σ2) the values that are most probable (or
“likely”) for the data that we have observed.

That is, choose values of β1, ..., βp (and σ2) that maximize the probability
of the response variables evaluated at their observed values.

The resulting values are called the maximum likelihood estimates (MLEs)
of β1, ..., βp (and σ2).
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For a single observation, we can be at the “most likely” point on the
probability curve

f(yi|Xi1, ..., Xip) =
1√

2πσ2
exp

{
−(yi − [β1Xi1 + · · ·+ βpXip])

2

2σ2

}

by choosing β1Xi1 + · · ·+ βpXip = yi.

However, there is more than one observation.

With N subjects, the likelihood is given by L(β1, ..., βp) =

N∏
i=1

f(yi|Xi1, ..., Xip) =
N∏
i=1

1√
2πσ2

exp

{
−(yi − [β1Xi1 + · · ·+ βpXip])

2

2σ2

}

38



In general, it is not possible to choose β1, . . . , βp that will match every yi
to every β1Xi1 + · · ·+ βpXip.

Instead, choose β1, . . . , βp to make the match as close as possible for all
subjects.

=⇒ Choose β1, . . . , βp to maximize L(β1, . . . , βp).

It happens that ML Estimates = Least Squares Estimates.

These estimates can be written in closed-form using vector and matrix
notation.
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Linear Regression in Vector Notation

The linear regression model for Yi

Yi = β1Xi1 + β2Xi2 + · · ·+ βpXip + ei

can also be written using vector notation

Yi = β1Xi1 + β2Xi2 + · · ·+ βpXip + ei

= X ′iβ + ei

where Xi is a (p× 1) vector representing the covariates,
X ′i = (Xi1, Xi2, ..., Xip), and β′ = (β1, β2, ..., βp) is a vector of p regression
parameters.
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Aside: Matrix Addition and Multiplication

Matrices are like spreadsheets.

Importantly, they allow us to perform several arithmetic operations
simultaneously.

They also provide a convenient shorthand notation.

Consider the following two simple examples.
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Let A =
(

2 4
3 5

)
, and B =

(
1 6
8 7

)
.

Then,

A+B =
(

2 + 1 4 + 6
3 + 8 5 + 7

)
=
(

3 10
11 12

)

A ∗B =
(

2 ∗ 1 + 4 ∗ 8 2 ∗ 6 + 4 ∗ 7
3 ∗ 1 + 5 ∗ 8 3 ∗ 6 + 5 ∗ 7

)
=
(

34 40
43 53

)
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Vectors

Vectors are special cases of matrices with one row or one column.

They follow the rules for matrices.

By convention, when we write a vector as X, we understand it to be a
column vector of dimension, say p× 1.

When we want to indicate a row vector, we write X ′.

In linear regression we have the product of the following two vectors:

X ′iβ = (Xi1, Xi2, ..., Xip)


β1

β2
...
βp

 = β1Xi1 + β2Xi2 + · · ·+ βpXip
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Maximum Likelihood Estimation

With independent observations, the joint density is simply the product of
the individual univariate normal densities for Yi.

Hence, we wish to maximize

N∏
i=1

f(Yi|Xi1, ..., Xip) =
N∏
i=1

1√
2πσ2

exp

{
−(Yi −X ′iβ)2

2σ2

}

=
(
2πσ2

)−N/2 exp

{
−

N∑
i=1

(Yi −X ′iβ)2

2σ2

}
,

evaluated at the observed values of the data, with respect to the regression
parameters, β.

This is called maximizing the likelihood function.
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Note that maximizing the likelihood is equivalent to maximizing the
logarithm of the likelihood.

Hence, we can maximize

−
N∑
i=1

(Yi −X ′iβ)2
/2σ2

by minimizing
N∑
i=1

(Yi −X ′iβ)2
/2σ2

Note: This is equivalent to finding the least squares estimates of β, i.e., the
values that minimize the sum of the squares of the residuals.

45



The least squares solution can be written as

β̂ =

[
N∑
i=1

(XiX
′
i)

]−1 N∑
i=1

(XiYi)

This least squares estimate is the value that PROC GLM or PROC REG
in SAS or any least squares regression program will produce.
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Properties of Least Square Estimator

1. For any choice of σ2, the least squares estimate of β is unbiased, that is

E(β̂) = β

2. The sampling distribution is given by:

Cov(β̂) = σ2

[
N∑
i=1

(XiX
′
i)

]−1

β̂ ∼ N

β, σ2

[
N∑
i=1

(XiX
′
i)

]−1
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Regression using PROC GLM in SAS

DATA topeka;
INFILE ’g\shared\bio226\topeka.txt’;
INPUT id height age logfev;

loght = log(height);
RUN;

PROC GLM DATA=topeka;
MODEL logfev = age loght;

RUN;
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SAS The GLM Procedure

Dependent Variable: logfev

Solution for Fixed Effects

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 2 29.149 14.5746 876.6 <0.0001
Error 297 4.938 0.0166
Total 299 34.087

Estimates

Standard
Parameter Estimate Error t value Pr > |t|
Intercept -0.355 0.0319 -11.14 <0.0001
Age 0.020 0.0045 4.42 <0.0001
LogHt 2.295 0.1640 13.99 <0.0001
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Interpretation

The fitted model is

log(FEV1) = −0.355 + 0.020 ∗ age + 2.295 ∗ log(ht)

So, a 1 year increase in age is associated with a 0.020 increase in
log(FEV1) (while holding height constant).

Similarly, for the first child on slide 29, the fitted value of log(FEV1) is

log(FEV1) = −0.355 + 0.020 ∗ 11.3 + 2.295 ∗ log(1.45) = 0.724

so that the predicted FEV1 = exp(0.724) = 2.06 liters.
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Analysis of Variance

ANOVA: Describes how the mean of a continuous dependent variable
depends on a nominal (categorical, class) independent variable.

Analyzing samples from each of the p populations, we ask:

• Are there any differences in the p population means?
• If so, which of the means differ?

=⇒ One-Way Analysis of Variance (ANOVA)

Objective: To estimate and test hypotheses about the population group
means, µ1, µ2, . . . , µp.

H0 : µ1 = µ2 = . . . = µp
HA : µj’s not all equal

Note: Some of the µj’s could be equal under HA
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Example: Dosages of four cardiotoxic drugs at
death of infused guinea pigs

• Evaluating potencies of four cardiac treatments

• Observe dosage at which animals (guinea pigs) die for each treatment

• 10 guinea pigs per treatment (40 observations in all)

• Assess any differences in toxicity of four treatments, i.e., differences in
mean dosage required to kill animal

ȳ1 = 25.9, ȳ2 = 22.2, ȳ3 = 20.0, ȳ4 = 19.6
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Goal of One-Way ANOVA

Assess whether a factor has a significant “effect” on a continuous outcome
variable (Y )

Two complementary ways to consider this:

• Does the mean of Y differ among levels of a factor?

• Do differences among levels of a factor explain some of the variation in
Y ?

ANOVA: Analyzing variances? Although interested in comparing means,
we do so by comparing variances.
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Sources of Variation:

• quantify variability between sample means
−→ Between groups variability (“mean square between”)

• quantify error variability or variability of observations in the same group
−→ Error or within groups variability (“mean square error”)

The ANOVA table provides a summary and comparison of these sources
of variation.

Between >> Within (Error) =⇒ µj’s vary
=⇒ reject H0

Otherwise cannot reject H0.
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Example: Dosages of four cardiotoxic drugs at
death of infused guinea pigs

• Evaluating potencies of four cardiac treatments

• Observe dosage at which animals (guinea pigs) die for each treatment

• 10 guinea pigs per treatment (40 observations in all)

• Assess any differences in toxicity of four treatments, i.e. differences in
mean dosage required to kill animal

ȳ1 = 25.9, ȳ2 = 22.2, ȳ3 = 20.0, ȳ4 = 19.6
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SAS Syntax for One-Way ANOVA

DATA toxic;
INFILE ’g:\shared\bio226\tox.txt’;
INPUT y drug;

RUN;
PROC GLM DATA=toxic;

CLASS drug;
MODEL y=drug;

RUN;
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ANOVA Table

Source DF SS MS F
Between 3 249.9 83.3 8.5
(Drug)
Within 36 350.9 9.7
(Error)
Total 39 600.8

F = 83.3/9.7 = 8.5, (p < 0.001) =⇒ reject H0 : µ1 = µ2 = µ3 = µ4.

Note:

• This is a “global” test.
• It does not specify which µj’s differ.
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Relationship between ANOVA & Regression

Essentially identical, although often obscured by differences in
terminology.

The ANOVA model can be represented as a multiple regression model
with dummy (or indicator) variables.

=⇒ A multiple regression analysis with dummy-variable coded factors
will yield the same results as an ANOVA.
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Dummy or Indicator Variable Coding

Consider a factor with p levels:

Define X2 = 1 if subject belongs to level 2, and 0 otherwise; define
X3 = 1 if subject belongs to level 3, and 0 otherwise; and defineX4, ..., Xp

similarly.

Note 1: By omission, the first level of the factor is selected as a
“reference”.
Note 2: Default option in many procedures in SAS is to use last level as
a “reference”.

Level X2 X3 X4 . . . Xp

1 0 0 0 . . . 0
2 1 0 0 . . . 0
3 0 1 0 . . . 0
... ... ... ... ... ... ... ...
p 0 0 0 . . . 1
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This leads to a simple way of expressing the ANOVA model:

Yi = β1 + β2Xi2 + β3Xi3 + · · ·+ βpXip + ei

Note:

µ1 = β1

µ2 = β1 + β2

µ3 = β1 + β3
...

µp = β1 + βp

Equivalently:

Group 2 versus (minus) Group 1 = β2

Group 3 versus (minus) Group 1 = β3
... ...

Group p versus (minus) Group 1 = βp
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Choice of Reference Level

The usual choice of reference group:

(i) A natural baseline or comparison group, and/or

(ii) group with largest sample size
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Summary

The regression representation of ANOVA is more attractive because:

• It can handle balanced (i.e., equal cell sizes) and unbalanced data in a
seamless fashion.

• In addition to the usual ANOVA table summaries, it provides other useful
and interpretable results, e.g., estimates of effects and standard errors.

• Generalizations of ANOVA to include continuous predictors (and
interactions among nominal and continuous predictors) are straightforward.
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Longitudinal Data - Basic Concepts

Features of Longitudinal Data:

Defining feature of longitudinal studies is that measurements of the same
individuals are taken repeatedly through time.

Longitudinal studies allow direct study of change over time.

Objective: primary goal is to characterize the change in response over
time and the factors that influence change.

With repeated measures on individuals, we can capture within-individual
change.
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Terminology

Individuals/Subjects: Participants in a longitudinal study are referred
to as individuals or subjects.

Occasions: In a longitudinal study individuals are measured repeatedly
at different occasions or times.

The number of repeated observations, and their timing, can vary widely
from one longitudinal study to another.

When number and timing of the repeated measurements are the same
for all individuals, study design is said to be “balanced” over time.

Note: Designs can be balanced, although studies may have
incompleteness in data collection.
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Correlation

An aspect of longitudinal data that complicates their statistical analysis
is that repeated measures on the same individual are usually positively
correlated.

This violates the fundamental assumption of independence that is the
cornerstone of many statistical techniques.

Why are longitudinal data correlated?

What are the potential consequences of not accounting for correlation
among longitudinal data in the analysis?
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Variability

An additional, although often overlooked, aspect of longitudinal data
that complicates their statistical analysis is heterogeneous variability.

That is, the variability of the outcome at the end of the study is often
discernibly different than the variability at the start of the study.

This violates the assumption of homoscedasticity that is the basis for
standard linear regression techniques.

Thus, there are two aspects of longitudinal data that complicate their
statistical analysis: (i) repeated measures on the same individual are
usually positively correlated, and (ii) variability is often heterogeneous
across measurement occasions.
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Notation

Let Yij denote the response variable for the ith individual (i = 1, ..., N)
at the jth occasion (j = 1, ..., n).

If the repeated measures are assumed to be equally-separated in time,
this notation will be sufficient.

Later, we refine notation to handle the case where repeated measures are
unequally-separated and unbalanced over time.

We can represent the n observations on the N individuals in a two-
dimensional array, with rows corresponding to individuals and columns
corresponding to the responses at each occasion.
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Table 4: Tabular representation of longitudinal data, with n repeated
observations on N individuals.

Occasion
Individual 1 2 3 . . . n

1 y11 y12 y13 . . . y1n

2 y21 y22 y23 . . . y2n

. . . . . . . .

. . . . . . . .

. . . . . . . .
N yN1 yN2 yN3 . . . yNn
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Vector Notation

We can group the n repeated measures on the same individual into a
n× 1 response vector:

Yi =


Yi1
Yi2
...
Yin

 .

Alternatively, we can denote the response vectors Yi as

Yi = (Yi1, Yi2, ..., Yin)′.
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Correlation

Before we can give a formal definition of correlation we need to introduce
the notion of expectation.

We denote the expectation or mean of Yij by

µj = E(Yij),

where E(·) can be thought of as a long-run average (over individuals).

The mean, µj, provides a measure of the location of the center of the
distribution of Yij.
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The variance provides a measure of the spread or dispersion of the values
of Yij around its respective mean:

σ2
j = E[Yij − E(Yij)]2 = E(Yij − µj)2.

The positive square-root of the variance, σj, is known as the standard
deviation.

The covariance between two variables, say Yij and Yik,

σjk = E [(Yij − µj)(Yik − µk)] ,

is a measure of the linear dependence between Yij and Yik.

When the covariance is zero, there is no linear dependence between the
responses at the two occasions.
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The correlation between Yij and Yik is denoted by

ρjk =
E [(Yij − µj)(Yik − µk)]

σjσk
,

where σj and σk are the standard deviations of Yij and Yik.

The correlation, unlike covariance, is a measure of dependence free of
scales of measurement of Yij and Yik.

By definition, correlation must take values between −1 and 1.

A correlation of 1 or −1 is obtained when there is a perfect linear
relationship between the two variables.
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For the vector of repeated measures, Yi = (Yi1, Yi2, ..., Yin)′, we define
the variance-covariance matrix, Cov(Yi),

Cov


Yi1
Yi2
...
Yin

 =


Var(Yi1) Cov(Yi1, Yi2) · · · Cov(Yi1, Yin)

Cov(Yi2, Yi1) Var(Yi2) · · · Cov(Yi2, Yin)
... ... . . . ...

Cov(Yin, Yi1) Cov(Yin, Yi2) · · · Var(Yin)



=


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

... ... . . . ...
σn1 σn2 · · · σ2

n

 ,

where Cov (Yij, Yik) = σjk = σkj = Cov(Yik, Yij).
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We can also define the correlation matrix, Corr(Yi),

Corr(Yi) =


1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
... ... . . . ...
ρn1 ρn2 · · · 1

 .

This matrix is also symmetric in the sense that Corr (Yij, Yik) = ρjk =
ρkj = Corr(Yik, Yij).
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Example: Treatment of Lead-Exposed Children
Trial

We restrict attention to the data from placebo group.

Data consist of 4 repeated measurements of blood lead levels obtained
at baseline (or week 0), weeks 1, 4, and 6.

The inter-dependence (or time-dependence) among the four repeated
measures of blood lead level can be examined by constructing a scatter-
plot of each pair of repeated measures.

Examination of the correlations confirms that they are all positive and
tend to decrease with increasing time separation.
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Figure 6: Pairwise scatter-plots of blood lead levels at baseline, week 1,
week 4, and week 6 for children in the placebo group.
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Table 5: Estimated covariance matrix for the blood lead levels at baseline,
week 1, week 4, and week 6 for children in the placebo group of the TLC
trial.

Covariance Matrix

25.2 22.8 24.2 18.4

22.8 29.8 27.0 20.5

24.2 27.0 33.0 26.6

18.4 20.5 26.6 38.7
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Table 6: Estimated correlation matrix for the blood lead levels at baseline,
week 1, week 4, and week 6 for children in the placebo group of the TLC
trial.

Correlation Matrix

1.00 0.83 0.84 0.59

0.83 1.00 0.86 0.60

0.84 0.86 1.00 0.74

0.59 0.60 0.74 1.00
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Observations about Correlation in Longitudinal
Data

Empirical observations about the nature of the correlation among
repeated measures in longitudinal studies:

(i) correlations are positive,

(ii) correlations decrease with increasing time separation,

(iii) correlations between repeated measures rarely ever approach zero,
and

(iv) correlation between a pair of repeated measures taken very closely
together in time rarely approaches one.
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Consequences of Ignoring Correlation

Potential impact of ignoring correlation can be illustrated using data
from the Treatment of Lead-Exposed Children Trial.

For simplicity, consider only the first two repeated measures, taken at
week 0 and week 1.

It is of interest to determine the change in the mean response over time.

An estimate of change is given by

δ̂ = µ̂2 − µ̂1,

where µ̂j = 1
N

∑N
i=1Yij.
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In the TLC trial, the estimate of change in the succimer group is −13.0
(or 13.5− 26.5).

For inferences, we also need a standard error.

Variance of δ̂ is

Var(δ̂) = Var

{
1
N

N∑
i=1

(Yi2 − Yi1)

}
=

1
N

(
σ2

1 + σ2
2 − 2σ12

)
.

Note: Last term, −2σ12, accounts for the correlation among the repeated
measures.

Substituting estimates of the variances and covariance into this
expression:

V̂ar(δ̂) =
1
50
{25.2 + 58.9− 2(15.5)} = 1.06.
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What if we had ignored that the data are correlated and proceeded with
an analysis assuming all observations are independent?

Independence =⇒ zero covariance.

Leading to (incorrect) estimate of the variance of δ̂

1
50

(25.2 + 58.9) = 1.68,

which is approximately 1.6 times larger.
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In this illustration, ignoring the correlation results in:

• standard errors that are too large

• confidence intervals that are too wide

• p-values for the test of H0: δ = 0 that are too large

In general, failure to take account of the correlation (covariance) among
the repeated measures will result in incorrect estimates of the sampling
variability and can lead to quite misleading scientific inferences.
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Summary

Primary goal of a longitudinal study is to characterize the change in
response over time and the factors that influence change.

Longitudinal data require somewhat more sophisticated statistical
techniques because: (i) repeated measures on the same individual are
usually positively correlated, and (ii) variability is often heterogeneous
across measurement occasions.

Correlation and heterogeneous variability must be accounted for in order
to obtain valid inferences about change in response over time.
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Statistical Basis of Longitudinal Analysis (Part 1)

Overview:

In this part of the course we focus on linear models for longitudinal data.

Response variable is continuous and has distribution that is
approximately symmetric (without excessive skewness or outliers).

We introduce some additional vector and matrix notation.

We present a general linear regression model for longitudinal data.
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Single-Group Repeated Measures Design

Initially, we consider methods for analyzing longitudinal data collected
in the simplest design: single-group repeated measures design.

In this design, we have n repeated measures of the response on each of
N subjects.

Note: In certain repeated measures designs (e.g., cross-over designs),
subjects receive n different treatments at the n occasions.

In cross-over designs, goal is to compare treatments assigned at different
occasions.
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Listing each observation at the n occasions:

Occasions

Subject 1 2 . . . n

1 Y11 Y12 . . . Y1n

2 Y21 Y22 . . . Y2n

... ... ... ... ... ...

N YN1 YN2 . . . YNn
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If observations satisfied assumptions of one-way ANOVA, we could order
them from 1 to Nn in a vector with elements Yi, and write the model as

Yi = β1 + β2Xi2 + β3Xi3 + . . .+ βnXin + ei

where
Xij = 1, if observation i was obtained

at jth occasion; (j = 2, ..., n)

0, otherwise.

However, this model needs to be modified to account for the statistical
dependence among repeated observations obtained on the same subject.
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Example: Treatment of Lead-Exposed Children
Trial

For illustrative purposes, consider the data on the 50 children randomized
to Succimer.

Subject Week 0 Week 1 Week 4 Week 6
1 26.5 14.8 19.5 21.0
2 25.8 23.0 19.1 23.2
3 20.4 2.8 3.2 9.4
4 20.4 5.4 4.5 11.9
5 24.8 23.1 24.6 30.9
6 27.9 6.3 18.5 16.3
7 35.3 25.5 26.3 30.3
8 28.6 15.8 22.9 25.9
... ... ... ... ...

49 21.9 7.6 10.8 13.0
50 20.7 8.1 25.7 12.3
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Denote the population means at the n occasions by µ1, µ2, . . . , µn.

Then the null hypothesis of interest is

H0 : µ1 = µ2 = . . . = µn

How can we test this hypothesis?

We could choose pairs of occasions and perform a series of paired t−tests
⇒ n (n− 1) /2 tests.

This approach allows only pairwise comparisons.

Instead, we need to address the problem of correlation (covariance)
among repeated measures and extend the one-way ANOVA model.

92



One approach to analyzing such data is to consider extensions of the
one-way ANOVA model that account for the covariance.

That is, rather than assume that repeated observations of the same
subject are independent, with homogeneous variance, allow the repeated
measurements to have an unknown covariance structure.

To do this, we can use the SAS procedure, PROC MIXED, an extension
of PROC GLM which allows clusters of correlated observations.
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We will illustrate the use of PROC MIXED using the data from the TLC
trial.

Later we will consider the statistical basis for this analysis.

Note: PROC MIXED in SAS requires the data to be in a univariate (or
“long”) form.

As a first step, often it will be necessary to transform the data from a
“multivariate” (or “wide”) format to a “univariate” (or “long”) format.
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PROC MIXED in SAS

DATA tlc;
INFILE ’g:\shared\bio226\lead.txt’;
INPUT id y1 y2 y3 y4;

y=y1; time=0; OUTPUT;
y=y2; time=1; OUTPUT;
y=y3; time=4; OUTPUT;
y=y4; time=6; OUTPUT;

DROP y1-y4;
RUN;

PROC MIXED DATA=tlc;
CLASS id time;
MODEL y = time /S CHISQ;
REPEATED time /TYPE=UN SUBJECT=id R;
CONTRAST ’Week 6 - Week 0’

time -1 0 0 1 / CHISQ;
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Multivariate (or Wide) Form of Succimer Data

ID Y1 Y2 Y3 Y4
1 26.5 14.8 19.5 21.0
2 25.8 23.0 19.1 23.2
3 20.4 2.8 3.2 9.4
4 20.4 5.4 4.5 11.9
5 24.8 23.1 24.6 30.9
6 27.9 6.3 18.5 16.3
7 35.3 25.5 26.3 30.3
8 28.6 15.8 22.9 25.9
... ... ... ... ...

49 21.9 7.6 10.8 13.0
50 20.7 8.1 25.7 12.3
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Univariate (or Long) Form of Succimer Data
(1st 3 subjects only)

OBS ID Y TIME

1 1 26.5 0
2 1 14.8 1
3 1 19.5 4
4 1 21.0 6
5 2 25.8 0
6 2 23.0 1
7 2 19.1 4
8 2 23.2 6
9 3 20.4 0

10 3 2.8 1
11 3 3.2 4
12 3 9.4 6
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Selected Output from PROC MIXED

The Mixed Procedure

Estimated R Matrix for id 1

Row Col1 Col2 Col3 Col4

1 25.2098 15.4654 15.1380 22.9854
2 15.4654 58.8671 44.0291 35.9660
3 15.1380 44.0291 61.6571 33.0220
4 22.9854 35.9660 33.0220 85.4946
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Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) id 25.2098
UN(2,1) id 15.4654
UN(2,2) id 58.8671
UN(3,1) id 15.1380
UN(3,2) id 44.0291
UN(3,3) id 61.6571
UN(4,1) id 22.9854
UN(4,2) id 35.9660
UN(4,3) id 33.0220
UN(4,4) id 85.4946
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Fit Statistics

-2 Res Log Likelihood 1280.3
AIC (smaller is better) 1300.3
AICC (smaller is better) 1301.5
BIC (smaller is better) 1319.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 86.73 <.0001
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The Mixed Procedure

Solution for Fixed Effects

Standard
Effect time Estimate Error DF t Value Pr > |t|

Intercept 20.7620 1.3076 49 15.88 <.0001
time 0 5.7780 1.1378 49 5.08 <.0001
time 1 -7.2400 1.2036 49 -6.02 <.0001
time 4 -5.2480 1.2736 49 -4.12 0.0001
time 6 0 . . . .

101



The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

time 3 49 163.72 54.57 <.0001 <.0001

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

Week 6 - Week 0 1 49 25.79 25.79 <.0001 <.0001
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Covariance Structure

When we estimate the covariance matrix without making any particular
assumption about the covariance structure, we say that we are using an
unrestricted or unstructured covariance matrix.

As we shall see later, it is sometimes advantageous to model the
covariance structure more parsimoniously.

How important is it to take account of the covariance among repeated
measures?

We can address that question by re-analyzing the blood lead level data
under the assumption of independence and homogeneity of variance.
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PROC GLM versus PROC MIXED in SAS

DATA tlc;
INFILE ’g:\shared\bio226\lead.txt’;
INPUT id y1 y2 y3 y4;

y=y1; time=0; OUTPUT;
y=y2; time=1; OUTPUT;
y=y3; time=4; OUTPUT;
y=y4; time=6; OUTPUT;

DROP y1-y4;
RUN;
PROC GLM DATA=tlc;

CLASS time;
MODEL y = time /SOLUTION;
ESTIMATE ’Week 6 - Week 0’ time -1 0 0 1;

RUN;
PROC MIXED DATA=tlc;

CLASS id time;
MODEL y = time /S CHISQ;
REPEATED time /TYPE=UN SUBJECT=id R;
ESTIMATE ’Week 6 - Week 0’ time -1 0 0 1;

RUN;
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Selected Output from PROC GLM

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 5104.41815 1701.47272 29.43 <.0001
Error 196 11330.20380 57.80716
Corrected Total 199 16434.62195

Source DF Type III SS Mean Square F Value Pr > F

time 3 5104.418150 1701.472717 29.43 <.0001
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Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 20.76200000 1.07524102 19.31 <.0001
time 0 5.77800000 1.52062043 3.80 0.0002
time 1 -7.24000000 1.52062043 -4.76 <.0001
time 4 -5.24800000 1.52062043 -3.45 0.0007
time 6 0.00000000 . . .

Standard
Parameter Estimate Error t Value Pr > |t|

Week 6 - Week 0 -5.77800000 1.52062043 -3.80 0.0002
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Selected Output from PROC MIXED

Solution for Fixed Effects

Standard
Effect time Estimate Error DF t Value Pr > |t|

Intercept 20.7620 1.3076 49 15.88 <.0001
time 0 5.7780 1.1378 49 5.08 <.0001
time 1 -7.2400 1.2036 49 -6.02 <.0001
time 4 -5.2480 1.2736 49 -4.12 0.0001
time 6 0 . . . .
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The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

time 3 49 163.72 54.57 <.0001 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

Week 6 - Week 0 -5.7780 1.1378 49 -5.08 <.0001
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Note that the estimates of the change in mean from baseline (week 0)
to week 6 are the same in both analyses, i.e., −5.778; but the standard
errors are discernibly different.

The standard error yielded by PROC GLM, 1.52, is not valid since
the procedure has incorrectly assumed that all of the observations are
independent and with homogeneous variance.

The standard error yielded by PROC MIXED, 1.14, is valid since the
procedure has accounted for the covariance among repeated measures in
the analysis.
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Notation of General Linear Model

Previously, we assumed a sample of N subjects are measured repeatedly
at n occasions.

Either by design or happenstance, subjects may not have same number
of repeated measures or be measured at same set of occasions.

We assume there are ni repeated measurements on the ith subject and
each Yij is observed at time tij.
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We can group the response variables for the ith subject into a ni × 1
vector:

Yi =


Yi1
Yi2
...
Yini

 , i = 1, ..., N.

Associated with Yij there is a p× 1 vector of covariates

Xij =


Xij1

Xij2
...

Xijp

 , i = 1, ..., N ; j = 1, ..., ni.

Note: Information about the time of observation, treatment or exposure
group, and other predictor and confounding variables can be expressed
through this vector of covariates.
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We can group the vectors of covariates into a ni × p matrix:

Xi =


Xi11 Xi12 · · · Xi1p

Xi21 Xi22 · · · Xi2p
... ... . . . ...

Xini1 Xini2 · · · Xinip

 , i = 1, ..., N.

Xi is simply an ordered collection of the values of the p covariates for
the ith subject at the ni occasions.
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Linear Models for Longitudinal Data

Throughout this course we consider linear regression models for changes
in the mean response over time:

Yij=β1Xij1 + β2Xij2 + · · ·+ βpXijp + eij, j = 1, ..., ni;

where β1, ..., βp are unknown regression coefficients.

The eij are random errors, with mean zero, and represent deviations of
the Yij’s from their means,

E(Yij|Xij)=β1Xij1 + β2Xij2 + · · ·+ βpXijp.

Typically, Xij1 = 1 for all i and j, and then β1 is the intercept term in
the model.
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Vector and Matrix Representation

Note that the linear model

E(Yij|Xij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp, j = 1, ..., ni;

describes the mean response at all ni occasions.

For example, at the third occasion (j = 3),

E(Yi3|Xi3) = β1Xi31 + β2Xi32 + · · ·+ βpXi3p.

This model can also be represented in vector/matrix notation as:

E(Yi|Xi) = Xiβ,

where β′ = (β1, ..., βp).
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Note that the model

E(Yi|Xi) = Xiβ,

is simply a shorthand representation for

E


Yi1

Yi2
...

Yini

 =


Xi11 Xi12 · · · Xi1p

Xi21 Xi22 · · · Xi2p
... ... . . . ...

Xini1 Xini2 · · · Xinip




β1

β2
...

βp

 .

Vectors and matrices simply allow us to express regression models for
longitudinal data in a very economical fashion.
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Illustration: Treatment of Lead-Exposed Children

Trial

• Exposure to lead during infancy is associated with substantial deficits in
tests of cognitive ability

• Chelation treatment of children with high lead levels usually requires
injections and hospitalization

• A new agent, Succimer, can be given orally

• Randomized trial examining changes in blood lead level during course of
treatment

• 100 children randomized to placebo or Succimer

• Measures of blood lead level at baseline, 1, 4 and 6 weeks
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Table 7: Blood lead levels (µg/dL) at baseline, week 1, week 4, and week 6
for 8 randomly selected children.

ID Groupa Baseline Week 1 Week 4 Week 6
046 P 30.8 26.9 25.8 23.8
149 A 26.5 14.8 19.5 21.0
096 A 25.8 23.0 19.1 23.2
064 P 24.7 24.5 22.0 22.5
050 A 20.4 2.8 3.2 9.4
210 A 20.4 5.4 4.5 11.9
082 P 28.6 20.8 19.2 18.4
121 P 33.7 31.6 28.5 25.1

a P = Placebo; A = Succimer.

117



For illustrative purposes, consider model that assumes mean blood lead
level changes linearly over time, but at a rate that differs by group.

Assume two treatment groups have different intercepts and slopes:

Yij = β1Xij1 + β2Xij2 + β3Xij3 + β4Xij4 + eij,

where Xij1 = 1 for all i and all j;
Xij2 = tj, the week in which the blood lead level was obtained;
Xij3 = 1 if the ith subject is assigned to the succimer group and Xij3 = 0
otherwise.
Xij4 = tj if the ith subject is assigned to the succimer group and Xij4 = 0
otherwise. Alternatively, Xij4 = Xij2 ∗Xij3.
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Thus, for children in the placebo group

E(Yij|Xij) = β1 + β2tj,

where β1 represents the mean blood lead level at baseline (week = 0) and
β2 is the constant rate of change in mean blood level.

Similarly, for children in the succimer group

E(Yij|Xij) = (β1 + β3) + (β2 + β4)tj,

where β2 + β4 is the constant rate of change in mean blood level per week.

Hypothesis that treatments are equally effective in reducing blood lead
levels translated into hypothesis that β4 = 0.
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To reinforce notation, consider the responses and covariates at the 4
occasions for any individual.

For example, the responses at the 4 occasions for ID = 046:
30.8

26.9

25.8

23.8

 .

The values of the covariates at the 4 occasions for ID = 046:
1 0 0 0

1 1 0 0

1 4 0 0

1 6 0 0

 .

This individual was assigned to treatment with placebo.
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On the other hand, the responses at the 4 occasions for ID = 149:
26.5

14.8

19.5

21.0

 .

The values of the covariates at the 4 occasions for ID = 149:
1 0 1 0

1 1 1 1

1 4 1 4

1 6 1 6

 .

This individual was assigned to treatment with succimer.
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So, using vectors and matrices, model for the mean blood lead levels can
be represented as

E(Yi) = Xiβ,

where, for example,

E(Yi) = E


Yi1
Yi2
Yi3
Yi4

 =


1 0 0 0
1 1 0 0
1 4 0 0
1 6 0 0




β1

β2

β3

β4

 =


β1

β1 + β2

β1 + 4β2

β1 + 6β2



for children in the placebo group.
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So, model for the mean blood lead levels can be represented as
E(Yi1)
E(Yi2)
E(Yi3)
E(Yi4)

 =


β1 ∗ 1 + β2 ∗ 0 + β3 ∗ 0 + β4 ∗ 0
β1 ∗ 1 + β2 ∗ 1 + β3 ∗ 0 + β4 ∗ 0
β1 ∗ 1 + β2 ∗ 4 + β3 ∗ 0 + β4 ∗ 0
β1 ∗ 1 + β2 ∗ 6 + β3 ∗ 0 + β4 ∗ 0

 =


β1

β1 + β2

β1 + 4β2

β1 + 6β2


for children in the placebo group, and


E(Yi1)
E(Yi2)
E(Yi3)
E(Yi4)

 =


β1 ∗ 1 + β2 ∗ 0 + β3 ∗ 1 + β4 ∗ 0
β1 ∗ 1 + β2 ∗ 1 + β3 ∗ 1 + β4 ∗ 1
β1 ∗ 1 + β2 ∗ 4 + β3 ∗ 1 + β4 ∗ 4
β1 ∗ 1 + β2 ∗ 6 + β3 ∗ 1 + β4 ∗ 6

 =


(β1 + β3)

(β1 + β3) + (β2 + β4)
(β1 + β3) + 4(β2 + β4)
(β1 + β3) + 6(β2 + β4)


for children in the succimer group.
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Statistical Basis of Longitudinal Analysis (Part 2)

Overview:

Previously, we introduced some additional vector and matrix notation.

We also presented a general linear regression model for longitudinal data:

E(Yij|Xij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp, j = 1, ..., ni.

Next, we consider distributional assumptions and discuss inference based
on maximum likelihood (ML).
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General Linear Model for Longitudinal Data

We assume a general linear regression model,

Yij = β1Xij1 + β2Xij2 + · · ·+ βpXijp + eij, j = 1, ..., ni;

where β1, ..., βp are unknown regression coefficients.

The eij are random errors, with mean zero, and are expected to be
correlated within individuals.

That is, Cov(eij, eij′) 6= 0 (j 6= j′).

To simplify notation, in the following we assume that ni = n.
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Assumptions

(1) The individuals represent a random sample from the population of
interest.

(2) The elements of the vector of repeated measures Yi1, . . . , Yin, have a
Multivariate Normal (MVN) distribution, with means

µij = E(Yij|Xij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp

(3) Observations from different individuals are independent, while repeated
measurements of the same individual are not assumed to be independent.

The covariance matrix of the vector of observations, Yi1, . . . , Yin, is denoted
Σ and its elements are σjj′ (typically, we denote variances, σjj, by σ2

j ).
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Probability Models

The foundation of most statistical procedures is a probability model, i.e.,
probability distributions are used as models for the data.

A probability distribution describes the likelihood or relative frequency of
occurrence of particular values of the response (or dependent) variable.

Recall: The normal probability density for a single response variable, say
Yi, in the standard linear regression model is:

f(yi|Xi1, ..., Xip) =
1√

2πσ2
exp

{
−(yi − [β1Xi1 + · · ·+ βpXip])

2

2σ2

}
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Equivalently, we assume that ei ∼ N(0, σ2)
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With repeated measures we have a vector of response variables and must
consider joint probability models for the entire vector of responses.

A joint probability distribution describes the probability or relative
frequency with which the vector of responses takes on a particular set of
values.

The Multivariate Normal Distribution is an extension of the Normal
distribution for a single response to a vector of responses.
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Multivariate Normal Distribution

The multivariate normal probability density function for
Yi = (Yi1, Yi2, . . . , Yin)′ has the following representation:

f (Yi|Xi) = f (Yi1, Yi2, . . . , Yin|Xi) =

(2π)−n/2 |Σ|−1/2 exp
[
− (Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2

]
where |Σ| is the determinant of Σ (also known as the generalized variance).

Note that f (Yi|Xi) describes the probability or relative frequency of
occurrence of a particular set of values of (Yi1, Yi2, . . . , Yin).
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Notable Features:

• f (Yi|Xi) is completely determined by the vector of means, µi = Xiβ,
and by Σ
• f (Yi|Xi) depends to a very large extent on

(Yi −Xiβ)′Σ−1 (Yi −Xiβ)

• Although somewhat more complicated than in the univariate case, the
latter has interpretation in terms of a measure of distance
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In the bivariate case, it can be shown that

(Yi − µi)′Σ−1 (Yi − µi) =

(1− ρ2)−1

{
(Yi1 − µ1)2

σ11
+

(Yi2 − µ2)2

σ22
− 2ρ

(Yi1 − µ1)(Yi2 − µ2)
√
σ11σ22

}

where ρ = σ12√
σ11σ22

.

Note that this measure of distance

(i) down-weights deviations from the mean when the variance is large; this
make intuitive sense because when the variance is large the “information”
is somewhat poorer; and

(ii) modifies the distance depending on the magnitude of the correlation;
when there is strong correlation, knowing that Yi1 is “close” to µ1 also tells
us something about how close Yi2 is to µ2.
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Maximum Likelihood and Generalized Least Squares

Next we consider a framework for estimation of the unknown parameters,
β and Σ.

When full distributional assumptions have been made for vector of responses
a standard approach is to use the method of maximum likelihood (ML).

Recall main idea behind ML: use as estimates of β and Σ the values that
are most probable (or “likely”) for the data that we have observed.

That is, choose values of β and Σ that maximize the probability of the
response variables evaluated at their observed values.
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Regression with Independent Observations

For standard linear regression, with independent observations, the joint
density is the product of the individual univariate normal densities.

We maximize

N∏
i=1

f(yi|Xi1, ..., Xip) =
N∏
i=1

1√
2πσ2

exp

{
−(Yi −X ′iβ)2

2σ2

}

=
(
2πσ2

)−N/2 exp

{
−

N∑
i=1

(Yi −X ′iβ)2

2σ2

}
,

with respect to the regression parameters, β,
or minimize

N∑
i=1

(Yi −X ′iβ)2
/2σ2

135



Generalized Least Squares

To find ML estimate of β in the repeated measures setting we first assume
Σ is known (later, we will relax this unrealistic assumption).

Given that Yi = (Yi1, Yi2, . . . , Yin)′ are assumed to have a multivariate
normal distribution, we must maximize the following log-likelihood

ln { (2π)−Nn/2 |Σ|−N/2

exp
[
−

N∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2
]
}

= −Nn2 ln (2π)− N
2 ln |Σ|

−
[
N∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2
]

or minimize
N∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ)
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The estimate of β that minimizes this expression is known as the
generalized least squares (GLS) estimate and can be written as

β̂ =

[
N∑
i=1

(
X ′iΣ

−1Xi

)]−1 N∑
i=1

(
X ′iΣ

−1Yi
)

This is the estimate that PROC MIXED in SAS provides.
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Properties of GLS

(1) For any choice of Σ, GLS estimate of β is unbiased; that is, E(β̂) = β.

(2) Cov(β̂) =
[
N∑
i=1

(
X ′iΣ

−1Xi

)]−1

(3) Sampling Distribution of β̂:

β̂ ∼ N

β,[ N∑
i=1

(
X ′iΣ

−1Xi

)]−1


The most efficient generalized least squares estimate is the one that uses
the true value of Σ.
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Since we usually do not know Σ, we typically estimate it from the data.

In general, no simple expression for ML estimate of Σ.

It has to be found using numerical algorithms that maximize the likelihood.

Once ML estimate of Σ, say Σ̂, has been obtained, we substitute it in the
GLS estimator to obtain ML estimate of β,

β̂ =

[
N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1 N∑
i=1

(
X ′iΣ̂

−1Yi

)
In large samples, resulting estimator of β has all the same properties as
when Σ is known.
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Statistical Inference

To test hypotheses about β we can make direct use of the ML estimate β̂
and its estimated covariance matrix,

Ĉov(β̂) =

[
N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1

.

Let L denote a matrix or vector of known weights (often representing
contrasts of interest) and suppose that it is of interest to test H0 : Lβ = 0.

Note: Though we usually signify row vectors by transpose symbol, e.g, L′,
we assume here that L is either a matrix whose rows represent different
linear combinations or a single linear combination (L is then a row vector).
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Example: Suppose β = (β1, β2, β3)′ and let L = (0, 0, 1), then H0 : Lβ = 0
is equivalent to H0 : β3 = 0.

Note: A natural estimate of Lβ is Lβ̂ and the covariance matrix of Lβ̂ is
given by LCov(β̂)L′.

Thus, the sampling distribution of Lβ̂ is:

Lβ̂ ∼ N
(
Lβ,LCov(β̂)L′

)
.
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Case 1: Suppose that L is a single row vector.

Then LCov(β̂)L′ is a single value (scalar) and its square root provides an
estimate of the standard error for Lβ̂.

Thus an approximate 95% confidence interval is given by:

Lβ̂ ± 1.96
√
LĈov(β̂)L′

Wald Test

In order to test H0 : Lβ = 0 versus HA : Lβ 6= 0, we can use the Wald
statistic

Z =
Lβ̂√

LĈov(β̂)L′

and compare with a standard normal distribution.
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Recall: If Z is a standard normal random variable, then Z2 has a χ2

distribution with 1 df. Thus, an identical test is to compare

W 2 = (Lβ̂)(LĈov(β̂)L′)−1(Lβ̂)

to a χ2 distribution with 1 df.

This approach readily generalizes to L having more than one row and this
allows simultaneous testing of more than one hypothesis.

143



Case 2: Suppose that L has r rows.

Example: Suppose β = (β1, β2, β3)′ and let

L =
(

1 −1 0
1 0 −1

)
,

then H0 : Lβ = 0 is equivalent to H0 : β1 = β2 = β3.

A simultaneous test of the r contrasts is given by

W 2 = (Lβ̂)′(LĈov(β̂)L′)−1(Lβ̂)

which has a χ2 distribution with r df.

This is how the “Tests of Fixed Effects” are constructed in PROC MIXED.
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Likelihood Ratio Test

Suppose that we are interested in comparing two nested models, a “full”
model and a “reduced” model.

Aside: Nested Models

When one model (the “reduced” model) is a special case of the other (the
“full” model), the reduced model is said to be nested within the full model.

We can compare two nested models by comparing their maximized log-
likelihoods, say l̂full and l̂red; the former is at least as large as the latter.

The larger the difference between l̂full and l̂red the stronger the evidence that
the reduced model is inadequate.
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A formal test is obtained by taking

2(l̂full − l̂red)

and comparing the statistic to a chi-squared distribution with degrees of
freedom equal to the difference between the number of parameters in the
full and reduced models.

Formally, this test is called the likelihood ratio test (LRT).

We can use LRTs for hypotheses about models for the mean and the
covariance1.

1Later in the course, we will discuss some potential problems with the use of the likelihood ratio test for
comparing nested models for the covariance.
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Residual Maximum Likelihood (REML) Estimation

Recall: ML estimate of β and Σ is obtained by maximizing the following
log-likelihood

−Nn2 ln (2π)− N
2 ln |Σ|

−
[
N∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2
]

Although the MLEs have the usual large sample (or asymptotic) properties,
the MLE of Σ has well-known bias in small samples (e.g., the diagonal
elements of Σ are underestimated).
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To see problem, consider linear regression with independent errors.

If the N observations are independent we maximize
N∏
i=1

f(yi|Xi1, ..., Xip) =
(
2πσ2

)−N/2
exp

{
−

N∑
i=1

(Yi −X ′iβ)2

2σ2

}
.

This gives the usual least squares estimator of β, but ML estimator of σ2 is

σ̂2 =
N∑
i=1

(
Yi −X ′iβ̂

)2

/N

Note: The denominator is N . Furthermore, it can be shown that

E(σ̂2) =
(
N − p
N

)
σ2.

As a result, the ML estimate of σ2 will be biased in small samples and will
underestimate σ2.
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In effect, the bias arises because the ML estimate has not taken into account
that β, also, is estimated. That is, in the estimator of σ2 we have replaced
β by β̂.

It should not be too surprising that similar problems arise in the estimation
of Σ.

Recall: An unbiased estimator is given by using N − p as the denominator
instead of N .
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The theory of residual or restricted maximum likelihood estimation was
developed to address this problem.

The main idea behind REML is to eliminate the parameters β from the
likelihood so that it is defined only in terms of Σ.

One possible way to obtain the restricted likelihood is to consider
transformations of the data to a set of linear combinations of observations
that have a distribution that does not depend on β.

For example, the residuals after estimating β by ordinary least squares can
be used.

The likelihood for these residuals will depend only on Σ, and not on β.
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Thus, rather than maximizing

−N
2

ln |Σ| − 1
2

N∑
i=1

(
Yi −Xiβ̂

)′
Σ−1

(
Yi −Xiβ̂

)
REML maximizes the following slightly modified log-likelihood

−N
2

ln |Σ| − 1
2

N∑
i=1

(
Yi −Xiβ̂

)′
Σ−1

(
Yi −Xiβ̂

)

− 1
2

ln

∣∣∣∣∣
N∑
i=1

X ′iΣ
−1Xi

∣∣∣∣∣
When the residual likelihood is maximized, we obtain less biased estimate
of Σ.

That is, the extra determinant term effectively makes a correction or
adjustments that is analogous to the correction to the denominator in σ̂2.
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When REML estimation is used, we obtain the GLS estimates of β,

β̂ =

[
N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1 N∑
i=1

(
X ′iΣ̂

−1Yi

)

where Σ̂ is the REML estimate of Σ.

Note: The residual maximum likelihood (REML) can be used to compare
different models for the covariance structure.

However, it should not be used to compare different regression models since
the penalty term in REML depends upon the regression model specification.
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Instead, the standard ML log-likelihood should be used for comparing
different regression models for the mean.

In PROC MIXED, REML is the default maximization criterion.

ML estimates are obtained by specifying:

PROC MIXED METHOD = ML;
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Some Remarks on Missing Data

Missing data arise in longitudinal studies whenever one or more of the
sequences of measurements is incomplete, in the sense that some intended
measurements are not obtained.

Let Y (o) denote the measurements observed and Y (m) denote the
measurements that are missing.

For incomplete data to provide valid inference about a general linear model,
the mechanism (probability model) producing the missing observations
must satisfy certain assumptions.
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Here. we distinguish two different types of missing data mechanisms:

1) Data are missing completely at random (MCAR) when the probability
that an individual value will be missing is independent of Y (o) and Y (m).
Many methods of analysis are valid when the data are MCAR. Valid
methods include maximum likelihood and various ad hoc methods (e.g.
‘complete case’ analyses).
Example: ‘rotating panel’ designs.

2) Data are missing at random (MAR) when the probability that an
individual value will be missing is independent of Y (m) (but may depend
on Y (o)). If this assumption holds, likelihood-based inference is valid,
but most ad hoc methods are not.
Example: subject ‘attrition’ related to previous performance.

Note: Under assumptions 1) and 2), the missing data mechanism is often
referred to as being ‘ignorable’.
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Modelling Longitudinal Data

Overview:

Longitudinal data present two aspects of the data that require modelling:

(1) mean response over time

(2) covariance among repeated measures

Models for longitudinal data must jointly specify models for the mean and
covariance.
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Modelling the Mean

Two main approaches can be distinguished:

(1) analysis of response profiles

(2) parametric or semi-parametric curves
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Modelling the Covariance

Three broad approaches can be distinguished:

(1) “unstructured” or arbitrary pattern of covariance

(2) covariance pattern models

(3) random effects covariance structure
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Modelling the Mean: Analysis of Response Profiles

Basic idea: Compare groups of subjects in terms of mean response profiles
over time.

Useful for balanced longitudinal designs and when there is a single
categorical covariate (perhaps denoting different treatment or exposure
groups).

Analysis of response profiles can be extended to handle more than a single
group factor.

Analysis of response profiles can also handle missing data.
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Example

Treatment of Lead-Exposed Children (TLC) Trial

Recall data from TLC trial:

Children randomized to placebo or Succimer.

Measures of blood lead level at baseline, 1, 4 and 6 weeks.

The sequence of means over time in each group is referred to as the “mean
response profile”.
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Figure 7: Mean blood lead levels at baseline, week 1, week 4, and week 6
in the succimer and placebo groups.
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Hypotheses concerning response profiles

Given a sequence of n repeated measures on a number of distinct groups of
individuals, three main questions:

(1) Are the mean response profiles similar in the groups, in the sense that
the mean response profiles are parallel?
This is a question that concerns the group × time interaction effect.

(2) Assuming mean response profiles are parallel, are the means constant
over time, in the sense that the mean response profiles are flat?
This is a question that concerns the time effect.
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(3) Assuming that the population mean response profiles are parallel, are
they also at the same level in the sense that the mean response profiles
for the groups coincide?
This is a questions that concerns the group effect;

Note: For many longitudinal studies, especially longitudinal clinical trials,
main interest is in Question 1: group × time interaction effect.
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Figure 8: Graphical representation of the null hypotheses of (a) no group
× time interaction effect, (b) no time effect, and (c) no group effect.
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Table 8: Mean response profile over time in 2 groups.

Measurement Occasion

Group 1 2 ... n
1 µ1(1) µ2(1) ... µn(1)

2 µ1(2) µ2(2) ... µn(2)
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Next, consider the differences between the group means at each occasion.

Define ∆j = µj(1)− µj(2), j = 1, ..., n.

The first hypothesis in an analysis of response profiles can be expressed as:

No group × time interaction effect:

H0 : ∆1 = ∆2 = · · · = ∆n.

With only 2 groups, the test of the null hypothesis of no group × time
interaction effect has (n− 1) degrees of freedom.

Note: Rejection of H0, no group × time interaction, indicates groups differ
in their patterns of change over time, but does not indicate how they differ.
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Table 9: Mean response profile over time in G groups.

Measurement Occasion

Group 1 2 ... n
1 µ1(1) µ2(1) ... µn(1)
2 µ1(2) µ2(2) ... µn(2)
... ... ... ...
g µ1(g) µ2(g) ... µn(g)
... ... ... ...

G µ1(G) µ2(G) ... µn(G)
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Let G denote the number of groups, with G ≥ 2.

Define ∆j(g) = µj(g)− µj(G), j = 1, ..., n; g = 1, ..., G− 1.

With G ≥ 2, the test of the null hypothesis of no group × time interaction
effect can be expressed as:

No group × time interaction effect:

H01 : ∆1(g) = ∆2(g) = · · · = ∆n(g); for g = 1, ..., G− 1.

With G ≥ 2, the test of the null hypothesis of no group × time interaction
effect has (G− 1)× (n− 1) degrees of freedom.
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Remark on Baseline Measurement

Baseline measurement given same status as post-randomization outcomes.

Alternative methods:

(a) Subtract baseline from each subsequent observation and analyze
differences

(b) Use baseline as a covariate

Covariate analysis based on (b) is generally more efficient than analyses of
differences for pre-test post-test designs2.

Note: Covariate analysis requires discarding subjects if there are missing
baseline values.

2In the next lecture, we discuss alternative methods for handling baseline response.
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Model for Variance-Covariance Matrix: Unstructured

Table 10: Assumed covariance matrix in analysis of response profiles.

Covariance Matrix

σ2
1 σ12 σ13 · · · σ1n

σ21 σ2
2 σ23 · · · σ2n

σ31 σ32 σ2
3 · · · σ3n

... ... ... . . . ...
σn1 σn2 σn3 · · · σ2

n
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The main focus of analysis is on a global test of the null hypothesis that
the mean response profiles are similar in the groups.

Are the mean response profiles parallel?

This is a question that concerns the group × time interaction effect.

In testing this hypothesis, both group and time are regarded as categorical
covariates (analogous to two-way ANOVA).

The analysis of response profiles can be specified as a regression model with
“indicator variables” for group and time.

However, unlike standard regression, the correlation and variability among
repeated measures on the same individuals must be properly accounted for.
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In summary, analysis of response profiles can be specified as a regression
model with “indicator variables” for group and time.

The global test of the null hypothesis of parallel profiles translates into a
hypothesis concerning regression coefficients for the group× time interaction
being equal to zero.

Beyond testing the null hypothesis of parallel profiles, the estimated
regression coefficients have meaningful interpretations.
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Analysis of Response Profiles using PROC MIXED

Note that PROC MIXED in SAS requires each repeated measurement in a
longitudinal data set to be a separate “record”. For example, in the TLC
trial, the data are recorded as follows:

(ID Group Baseline Week 1 Week 4 Week 6)
046 P 30.8 26.9 25.8 23.8
149 A 26.5 14.8 19.5 21.0
096 A 25.8 23.0 19.1 23.2
064 P 24.7 24.5 22.0 22.5
050 A 20.4 2.8 3.2 9.4
210 A 20.4 5.4 4.5 11.9
... ... ... ... ... ...

416 P 31.1 31.2 29.2 30.1

with a single “record” of 4 repeated measurements for each child in study.
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The data set is in a multivariate mode (or “wide form”).

Prior to analysis, these data must be converted to a data set with 4 records
for each child, one for each measurement occasion.

In the latter form, data set is in a univariate mode (or “long form”).

This can be accomplished using the illustrative SAS commands in Table 11
which produced the following:
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(ID Group Time Y)
046 P 0 30.8
046 P 1 26.9
046 P 4 25.8
046 P 6 23.8
149 A 0 26.5
149 A 1 14.8
149 A 4 19.5
149 A 6 21.0
... ... ... ...

416 P 0 31.1
416 P 1 31.2
416 P 4 29.2
416 P 6 30.1
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Table 11: Illustrative commands in SAS for transforming data set with
single record for each individual to data set with multiple records for each
measurement occasion.

DATA lead;
INFILE ’g:\shared\bio226\tlc.txt’;
INPUT id group $ y1 y2 y3 y4;
y=y1; time=0; OUTPUT;
y=y2; time=1; OUTPUT;
y=y3; time=4; OUTPUT;
y=y4; time=6; OUTPUT;
DROP y1-y4;
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Table 12: Illustrative commands for an analysis of response profiles using
PROC MIXED in SAS.

PROC MIXED ORDER=DATA;
CLASS id group time;
MODEL y=group time group*time /S CHISQ;
REPEATED time / TYPE=UN SUBJECT=id R RCORR;
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Case Study

Analysis of Response Profiles

Treatment of Lead-Exposed Children Trial
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Figure 9: Plot of mean blood lead levels at baseline, week 1, week 4, and
week 6 in the succimer and placebo groups.
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Recall, the main focus of analysis is on a global test of the null hypothesis
that the mean response profiles are similar in the groups.

Are the mean response profiles parallel?

This is a question that concerns the group × time interaction effect.

In testing this hypothesis, both group and time are regarded as categorical
covariates (analogous to two-way ANOVA).

The analysis of response profiles can be specified as a regression model with
“indicator variables” for group and time.
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Choice of Reference Level

The usual choice of reference group:

(i) A natural baseline or comparison group, and/or

(ii) group with largest sample size

In longitudinal data setting, the “baseline” or first measurement occasion
is a natural reference group for “time”.
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Treatment of Lead-Exposed Children Trial

In the TLC Trial there are two groups (placebo and succimer) and four
measurement occasions (week 0, 1, 4, 6).

Let X1 = 1 for all children at all occasions.

Creating indicator variables for group and time:

Group:

Let X2 = 1 if child randomized to succimer, X2 = 0 otherwise.

Time:

Let X3 = 1 if measurement at week 1, X3 = 0 otherwise
Let X4 = 1 if measurement at week 4, X4 = 0 otherwise
Let X5 = 1 if measurement at week 6, X5 = 0 otherwise

183



Recall: Hypothesis of main interest concerns group × time interaction effect.

Analysis of response profiles model can be expressed as:

Y = β1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X2 ∗X3 + β7X2 ∗X4 + β8X2 ∗X5 + e

Test of group × time interaction: H0 : β6 = β7 = β8 = 0.

The analysis must also account for the correlation among repeated measures
on the same child.

The analysis of response profiles estimates separate variances for each
occasion (4 variances) and six pairwise correlations.
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Treatment of Lead-Exposed Children Trial

Table 13 displays estimates of the covariance matrix.

Note the discernible increase in the variability in blood lead levels from pre-
to post-randomization.

This increase in variability from baseline is probably due to:

(1) given the treatment group assignment, there may be natural
heterogeneity in the individual response trajectories over time,

(2) the trial had an inclusion criterion that blood lead levels at baseline
were in the range of 20-44 micrograms/dL.
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Table 13: Estimated covariance matrix for the blood lead levels at baseline,
week 1, week 4, and week 6 for the children from the TLC trial.

Covariance Matrix

25.2 19.1 19.7 22.2

19.1 44.3 35.5 29.7

19.7 35.5 47.4 30.6

22.2 29.7 30.6 58.7
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Table 14: Estimated correlation matrix for the blood lead levels at baseline,
week 1, week 4, and week 6 for the children from the TLC trial.

Correlation Matrix

1.00 0.57 0.57 0.58

0.57 1.00 0.78 0.58

0.57 0.78 1.00 0.58

0.58 0.58 0.58 1.00
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Table 15: Tests of fixed effects based on analysis of response profiles of the
blood lead level data at baseline, weeks 1, 4, and 6.

Variable DF Chi-Squared P-Value

Group 1 25.43 <0.0001

Week 3 184.48 <0.0001

Group × Week 3 107.79 <0.0001
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Test of the group × time interaction is based on (multivariate) Wald test
(comparison of estimates to SEs).

In the TLC trial, question of main interest concerns comparison of two
treatment groups in terms of their patterns of change from baseline.

This question translates into test of group × time interaction.

The test of the group × time interaction yields a Wald statistic of 107.79
with 3 degrees of freedom (p < 0.0001).

Because this is a global test, it indicates that groups differ but does not tell
us how they differ.
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Recall, analysis of response profiles model can be expressed as:

Y = β1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X2 ∗X3 + β7X2 ∗X4 + β8X2 ∗X5 + e

Test of group × time interaction: H0 : β6 = β7 = β8 = 0.

The 3 single df contrasts for group × time interaction have direct
interpretations in terms of group comparisons of changes from baseline.

They indicate that children treated with succimer have greater decrease in
mean blood lead levels from baseline at all occasions when compared to
children treated with placebo (see Table 16).
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Table 16: Estimated regression coefficients and standard errors based on
analysis of response profiles of the blood lead level data.

Variable Group Week Estimate SE Z

Intercept 26.272 0.710 36.99
Group A 0.268 1.005 0.27
Week 1 −1.612 0.792 −2.04
Week 4 −2.202 0.815 −2.70
Week 6 −2.626 0.889 −2.96
Group × Week A 1 −11.406 1.120 −10.18
Group × Week A 4 −8.824 1.153 −7.66
Group × Week A 6 −3.152 1.257 −2.51
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Summary

“Analysis of response profiles” can be framed as a linear regression with
correlated observations.

Extensions beyond the usual profile analysis:

missing observations

baseline covariates

time contrasts

area-under-the-curve-analyses
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Strengths and Weaknesses of Analysis of Response Profiles

Strengths:

Allows arbitrary patterns in the mean response over time (no time trend
assumed) and arbitrary patterns in the covariance.

Analysis has a certain robustness since potential risks of bias due to
misspecification of models for mean and covariance are minimal.

Can accommodate an arbitrary pattern of missingness.

Drawbacks:

Requirement that the longitudinal design be balanced.

Analysis cannot incorporate mistimed measurements.
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Analysis ignores the time-ordering (time trends) of the repeated measures
in a longitudinal study.

Produces omnibus tests of effects that may have low power to detect group
differences in specific trends in the mean response over time (e.g., linear
trends in the mean response).

The number of estimated parameters, G × n mean parameters and n(n+1)
2

covariance parameters (variances and correlations), grows rapidly with the
number of measurement occasions.
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Single Degree of Freedom Contrasts

Recall: A drawback of analysis of response profiles is that it ignores the
time-ordering (time trends) of the repeated measures in a longitudinal
study.

Moreover, it produces omnibus tests of effects that may have low power to
detect group differences in specific trends in the mean response over time.

In a certain sense, an omnibus test disperses statistical power among too
many alternatives.
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This lack of specificity is potentially a problem in studies with a large
number of measurement occasions.

Recall that the test for group × time interaction has (G − 1) × (n − 1)
degrees of freedom.

This general test becomes less sensitive to an interaction with a specific
pattern as n increases.
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One-Degree-of-Freedom Tests for Group by Time
Interaction

In typical randomized trial, subjects are randomized to the intervention
groups at baseline.

Investigator seeks to determine whether the pattern of response after
randomization differs between groups.

A more powerful test of group by time interaction is obtained by specifying
a single contrast that best represents direction in which patterns of response
differ most markedly.
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Example 1: Test for equality of the difference between the average response
at occasions 2 through n and the baseline value in the two groups, using
the contrast

L = (−L1, L1),

where

L1 =
(
−1,

1
n− 1

,
1

n− 1
, . . . ,

1
n− 1

)
.

Here, L1 computes the mean response from occasions 2 through n and
subtracts the mean response at baseline for a single group.

L is a group contrast of this average change in the two groups.
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Example 2: A variant of this approach, known as Area Under the Curve
Minus Baseline, or sometimes simply AUC.

AUC is the area under the trapezoidal curve created by connecting the
mean responses at each occasion.

The AUC of the profile of blood lead levels for a single subject in the TLC
trial is shown in Figure 10.

Can subtract baseline mean: µ1 × (tn − t1), the area of the rectangle of
height µ1 and width tn − t1.
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Figure 10: Area under the curve, calculated using the trapezoidal rule, for
the profile of blood lead levels for a single subject in the TLC trial.
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The test for equality of the AUC in two groups employs the contrast

L = (−L2, L2),

where

L2 =
1
2
× (t1 + t2 − 2 tn, t3 − t1, . . . , tj+1 − tj−1, . . . , tn − tn−1)

and 1
2×(tj+1− tj−1) is the value of the contrast vector for time points other

than 1 (baseline) or n (the last occasion).

Note: These contrast weights are not intuitively obvious, but can be derived
from formula for area of a trapezoid.
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Example 3: A third popular method for constructing a single-degree-of-
freedom test corresponds to a test of the hypothesis that the trend over
time (e.g., linear) is the same in the groups.

A test of linear trend corresponds to

L = (−L3, L3),

where, for example,

L3 = (−2,−1, 0, 1, 2) ; when n = 5.

Because this method is a special case of fitting parametric curves, we defer
a discussion of this approach until next lecture.
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Application to the Treatment of Lead-Exposed
Children Trial

Recall: TLC trial measured blood lead levels at four occasions.

The vector representing the contrast based on the mean response at times
2 through n minus baseline is given by

L = (−L1, L1) =
(

1,−1
3
, −1

3
, −1

3
, −1,

1
3
,

1
3
,

1
3

)
.

We can apply the contrast weights to the means in Table 17.
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Table 17: Mean blood lead levels (and standard deviation) at baseline, week
1, week 4, and week 6 for the children from the TLC trial.

Group Baseline Week 1 Week 4 Week 6

Succimer 26.5 13.5 15.5 20.8

(5.0) (7.7) (7.8) (9.2)

Placebo 26.3 24.7 24.1 23.6

(5.0) (5.5) (5.8) (5.6)
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For the succimer group, the average value of the mean response minus
baseline is −9.90.

For the placebo group, the average value of the mean response minus
baseline is −2.17.

L, the group contrast, is 7.73 and the value of the Wald test statistic is
Z = 8.21 (or W 2 = 67.4, with one degree of freedom).

This indicates a highly significant difference in the response pattern between
treatment groups.
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Similarly, because the time points in the TLC trial were 0, 1, 4, and 6 weeks,
the contrast for comparing the AUC (minus baseline) in the two treatment
groups is given by

L = (−L2, L2) = (5.5, −2, −2.5, −1, −5.5, 2, 2.5, 1).

The estimated mean AUC is −59.20 in the succimer group.

The estimated mean AUC is −11.40 in the placebo group.

L, the group contrast, is 47.8 and the value of the Wald statistic is Z = 8.97
(or W 2 = 80.5, with one degree of freedom).

Thus both methods of analysis provide a clear signal that the response
profile differs in the two treatment groups.
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Summary

In many applications, one-degree-of-freedom tests have increased sensitivity
to group differences.

For valid application, the form of the contrast must be specified prior to
data analysis.

Otherwise, one would be at risk of seeking the best contrast and testing its
significance as if it had been chosen in advance.
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Adjustment for Baseline Response

When data are complete (no missing data), the one-degree-of-freedom tests
described earlier can be constructed as follows:

(1) calculate a univariate summary statistic for each subject

(2) perform a test for equality of means of these summary statistics in the
G groups (e.g., t-test, ANOVA).

Furthermore, note that for the two tests described earlier, the summary
statistic corresponds to subtracting the baseline value from a summary of
the responses on occasions 2 through n.
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For example, for the test for equality of mean response minus baseline, the
summary statistic for ith subject is

(Yi2 + Yi3 + · · ·+ Yin)
n− 1

− Yi1.

This suggests an alternative approach analogous to analysis of covariance
(ANCOVA).

In the ANCOVA, the summary of the response at times 2 through n becomes
the dependent variable and the baseline value becomes a covariate in the
analysis.
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For example, with two groups, the ANCOVA model is

Y ∗i = β1 + β2Yi1 + β3 trti + e∗i ,

where

Y ∗i =
(Yi2 + Yi3 + · · ·+ Yin)

n− 1
,

trti is an indicator for group, and e∗i is the error term in the univariate
model.

The ANOVA or ANCOVA analysis will be appealing where initial changes
from baseline are expected to persist throughout the duration of follow up
(see Figure 11).
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Figure 11: Graphical representation of changes in the mean response from
baseline (in Group 1) that persist throughout the duration of follow up.
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How best to adjust for baseline in the analysis?

Through a contrast (ANOVA) or via ANCOVA?

The answer depends on the study design: observational versus randomized
study.

For observational study, usually not advisable to employ ANCOVA
approach because baseline value may be associated with other variables
whose effects are to be studied.
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Example: Observational study comparing rates of decline of pulmonary
function in asthmatics and non-asthmatics.

Suppose asthmatics have lower pulmonary function at all ages, but rates of
decline are equal for asthmatics and non-asthmatics.

Suppose the model that best describes the data is:

Yij = β1 + β2Asthmai + β3Ageij + eij
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Thus the model for the non-asthmatics is,

E(Yij) = β1 + β3Ageij

and the model for the asthmatics is,

E(Yij) = (β1 + β2) + β3Ageij

Clearly, the rate of change or decline, expressed by β3, is the same in the
two groups.

As a result, an analysis that compares the decline in the two groups would
conclude that there are no differences.
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However, if we introduce the baseline value as a covariate, the model is:

Yij = β1 + β2Asthmai + β3Ageij + β4Yi1 + eij

This model gives the predicted values for asthmatics and non-asthmatics
relative to a common baseline value.

As a result, the decline in pulmonary function for the asthmatics will appear
to be greater than the decline for the non-asthmatics.

Why?

216



Note that the analysis with baseline value as a covariate addresses a
somewhat different question.

It considers the conditional question:

“Is an asthmatic expected to show the same decline in pulmonary function
as a non-asthmatic, given they both have the same initial level of pulmonary
function?”

The answer to this questions is a resounding “No”.

The asthmatic will be expected to decline more.

Why?
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If she is initially at the same level of pulmonary function as the non-
asthmatic,

(1) either her level of function is very high and can be expected to decline
or regress to the mean level for asthmatics, or

(2) the non-asthmatic’s level of function is very low and can be expected to
increase or regress to the mean level for non-asthmatics

As a result, the rates of decline, conditional on the same initial value, will
not be the same in the two groups.
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When subjects have been randomized to groups and the baseline value has
been obtained before any interventions, adjustment for baseline through
ANCOVA is of interest.

In a randomized study, the mean response at baseline is independent of
treatment assignment.

In that setting, it can be shown that the 1 df test based on a contrast and
the test based on ANCOVA represent alternative tests of the same null
hypothesis.

Moreover, the ANCOVA approach will always be more efficient, yielding
estimates of treatment group effects with smaller standard errors than those
obtained by calculating contrasts.
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The greater efficiency of ANCOVA can be highlighted by examining the
relative efficiency (or ratio of variances) in simple settings.

Suppose the variance is homogeneous, with common variance σ2, and the
correlation between any pair of repeated measures is ρ, the relative efficiency
is:

1
n
{1 + (n− 1) ρ} .

The greater efficiency of ANCOVA depends on both the number of repeated
measures and magnitude of ρ.

For example, when n = 5 and ρ = 0.4 the analysis of covariance is
approximately twice as efficient as subtracting the baseline response.

220



Alternative Adjustments for Baseline Response

The notion of adjustment for baseline can be applied more generally in the
analysis of response profiles.

We consider four ways of handling the baseline value:

(1) Retain it as part of the outcome vector and make no assumptions about
group differences in the mean response at baseline.

(2) Retain it as part of the outcome vector and assume the group means are
equal at baseline, as might be appropriate in a randomized trial.

(3) Subtract the baseline response from all of the remaining post-baseline
responses, and analyze the differences from baseline.

(4) Use baseline value as a covariate in the analysis of the post-baseline
responses.
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The first method retains the baseline response as part of the outcome vector.

This method produces the standard analysis of response profile results (see
Tables 18 and 19).

The test of the group × time interaction from this model yields a Wald
statistic of 107.79, with 3 degrees of freedom.
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Table 18: Tests of fixed effects based on a profile analysis of the blood lead
level data at baseline, weeks 1, 4, and 6.

Variable DF Chi-Squared P-Value

Group 1 25.43 <0.0001

Week 3 184.48 <0.0001

Group × Week 3 107.79 <0.0001
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Table 19: Estimated regression coefficients and standard errors based on
analysis of response profiles of the blood lead level data.

Variable Group Week Estimate SE Z

Intercept 26.272 0.710 36.99
Group A 0.268 1.005 0.27
Week 1 −1.612 0.792 −2.04
Week 4 −2.202 0.815 −2.70
Week 6 −2.626 0.889 −2.96
Group × Week A 1 −11.406 1.120 −10.18
Group × Week A 4 −8.824 1.153 −7.66
Group × Week A 6 −3.152 1.257 −2.51
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The second method also retains the baseline response as part of the outcome
vector.

This method corresponds to an analysis of response profiles where the group
means at baseline are constrained to be equal.

Implemented by excluding the treatment group main effect from the model
for the response profiles (see Table 20).

Note: Baseline (week 0) must be chosen as the reference level for time.

The test of the group × time interaction yields a Wald statistic of 111.96,
with 3 degrees of freedom.
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Table 20: Estimated regression coefficients and standard errors based on
an analysis of response profiles of the blood lead level data assuming equal
mean blood lead levels at baseline.

Variable Group Week Estimate SE Z

Intercept 26.406 0.500 52.83
Week 1 −1.645 0.782 −2.10
Week 4 −2.231 0.807 −2.76
Week 6 −2.642 0.887 −2.98
Group × Week A 1 −11.341 1.093 −10.38
Group × Week A 4 −8.765 1.131 −7.75
Group × Week A 6 −3.120 1.251 −2.49
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The third method does not retain the baseline response as part of the
outcome vector.

Baseline response is subtracted from post-baseline responses and analysis
is based on these differences from baseline,

Di = (Yi2 − Yi1, Yi3 − Yi1, . . . , Yin − Yi1)′.

Because outcome is a change score, this alters interpretation of the tests for
all three effects.

Test for group × time interaction becomes a test for parallel profiles for the
changes from baseline.

Test for group effect becomes a test that changes from baseline at occasion
2 are the same across groups (assuming occasion 2 is reference level).
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Table 21: Estimated regression coefficients and standard errors based on
an analysis of response profiles of the changes from baseline in blood lead
levels at week 1, week 4, and week 6.

Variable Group Week Estimate SE Z

Intercept −1.612 0.792 −2.04
Group A −11.406 1.120 −10.18
Week 4 −0.590 0.643 −0.92
Week 6 −1.014 0.934 −1.09
Group × Week A 4 2.582 0.909 2.84
Group × Week A 6 8.254 1.321 6.25
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Thus, the original test of “parallelism of profiles” now becomes a joint test
of main effect of group and the group × time interaction.

Formally equivalent to the test of parallelism in standard analysis of
response profiles.

Thus, first and third methods are completely equivalent.
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The fourth method does not retain the baseline response as part of the
outcome vector.

Instead, it focuses on adjusted changes from baseline and restricts the
outcome vector to measurements obtained post-baseline.

Similar to the third method, test of interest is a joint test of main effect of
group and the group × time interaction.

This yields a Wald statistic of 111.13, with 3 degrees of freedom.
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Table 22: Estimated regression coefficients and standard errors based on an
analysis of response profiles of the adjusted changes from baseline in blood
lead levels at week 1, week 4, and week 6.

Variable Group Week Estimate SE Z

Intercept −1.638 0.777 −2.11
Baseline† (Yi1 − 26.406) −0.196 0.094 −2.08
Group A −11.354 1.099 −10.34
Week 4 −0.590 0.643 −0.92
Week 6 −1.014 0.934 −1.09
Group × Week A 4 2.582 0.909 2.84
Group × Week A 6 8.254 1.321 6.25
†Centering baseline response on its overall mean (26.406) gives the intercept
a meaningful interpretation.
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Summary

In general, randomized studies are the only setting where we recommend
adjustment for baseline through analysis of covariance.

In randomized studies, such an adjustment leads to meaningful tests of
hypothesis of scientific interest.

Moreover, the tests based on the analysis of covariance approach will be
more powerful.

Alternatively, and almost equivalently, can retain baseline as part of
outcome vector and assume group means are equal at baseline.

Not advisable to make the above adjustments in observational studies.
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Modelling the Mean: Parametric Curves

Fitting parametric or semi-parametric curves to longitudinal data can be
justified on substantive and statistical grounds.

Substantively, in many studies true underlying mean response process
changes over time in a relatively smooth, monotonically increasing/decreasing
pattern.

Fitting parsimonious models for mean response results in statistical tests
of covariate effects (e.g., treatment × time interactions) with greater power
than in analysis of response profiles.
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Polynomial Trends in Time

Describe the patterns of change in the mean response over time in terms of
simple polynomial trends.

The means are modelled as an explicit function of time.

This approach can handle highly unbalanced designs in a relatively seamless
way.

For example, mistimed measurements are easily incorporated in the model
for the mean response.
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Linear Trends over Time

Simplest possible curve for describing changes in the mean response over
time is a straight line.

Slope has direct interpretation in terms of a constant rate of change in mean
response for a single unit change in time.

Consider two-group study comparing treatment and control, where changes
in mean response are approximately linear:

E (Yij) = β1 + β2Timeij + β3Groupi + β4Timeij ×Groupi,

where Groupi = 1 if ith individual assigned to treatment, and Groupi = 0
otherwise; and Timeij denotes measurement time for the jth measurement
on ith individual.
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Model for the mean for subjects in control group:

E (Yij) = β1 + β2Timeij,

while for subjects in treatment group,

E (Yij) = (β1 + β3) + (β2 + β4) Timeij.

Thus, each group’s mean response is assumed to change linearly over time
(see Figure 12).
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Figure 12: Graphical representation of model with linear trends for two
groups.
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Quadratic Trends over Time

When changes in the mean response over time are not linear, higher-order
polynomial trends can be considered.

For example, if the means are monotonically increasing or decreasing over
the course of the study, but in a curvilinear way, a model with quadratic
trends can be considered.

In a quadratic trend model the rate of change in the mean response is not
constant but depends on time.

Rate of change must be expressed in terms of two parameters.
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Consider two-group study example:

E (Yij) = β1 + β2Timeij + β3Time2
ij + β4Groupi

+ β5Timeij ×Groupi + β6Time2
ij ×Groupi.

Model for subjects in control group:

E (Yij) = β1 + β2Timeij + β3Time2
ij;

while model for subjects in treatment group:

E (Yij) = (β1 + β4) + (β2 + β5) Timeij + (β3 + β6) Time2
ij.
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Figure 13: Graphical representation of model with quadratic trends for two
groups.
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Note: mean response changes at different rate, depending upon Timeij.

Rate of change in control group is β2 + 2β3Timeij
(derivation of this instantaneous rate of change straightforward with
calculus).

Thus, early in the study when Timeij = 1, rate of change is β2 + 2β3; while
later in the study, say Timeij = 4, rate of change is β2 + 8β3.

Regression coefficients, (β2 +β5) and (β3 +β6), have similar interpretations
for treatment group.
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“Centering”

To avoid problems of collinearity it is advisable to “center” Timej on its
mean value prior to the analysis.

Replace Timej by its deviation from the mean of (Time1,Time2,...,Timen).

Note: centering of Timeij at individual-specific values (e.g., the mean of
the ni measurement times for ith individual) should be avoided, as the
interpretation of the intercept becomes meaningless.
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Linear Splines

If simplest curve is a straight line, then one way to extend the curve is
to have sequence of joined line segments that produces a piecewise linear
pattern.

Linear spline models provide flexible way to accommodate many non-linear
trends that cannot be approximated by simple polynomials in time.

Basic idea: Divide time axis into series of segments and consider piecewise-
linear trends, having different slopes but joined at fixed times.

Locations where lines are tied together are known as “knots”.

Resulting piecewise-linear curve is called a spline.

Piecewise-linear model often called “broken-stick” model.
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Figure 14: Graphical representation of model with linear splines for two
groups, with common knot.
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The simplest possible spline model has only one knot.

For two-group example, linear spline model with knot at t∗:

E (Yij) = β1 + β2Timeij + β3(Timeij − t∗)+ + β4Groupi
+ β5Timeij ×Groupi + β6(Timeij − t∗)+ ×Groupi,

where (x)+ is defined as a function that equals x when x is positive and is
equal to zero otherwise.

Thus, (Timeij − t∗)+ is equal to (Timeij − t∗) when Timeij > t∗ and is
equal to zero when Timeij ≤ t∗.
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Model for subjects in control group:

E (Yij) = β1 + β2Timeij + β3(Timeij − t∗)+.

When expressed in terms of mean response prior/after t∗:

E (Yij) = β1 + β2Timeij, Timeij ≤ t∗;

E (Yij) = (β1 − β3t
∗) + (β2 + β3)Timeij, Timeij > t∗.

Slope prior to t∗ is β2 and following t∗ is (β2 + β3).
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Model for subjects in treatment group:

E (Yij) = (β1 + β4) + (β2 + β5)Timeij + (β3 + β6)(Timeij − t∗)+.

When expressed in terms of mean response prior/after t∗:

E (Yij) = (β1 + β4) + (β2 + β5)Timeij, Timeij ≤ t∗;

E (Yij) = [(β1 + β4)− (β3 + β6)t∗)]
+ (β2 + β3 + β5 + β6)Timeij, Timeij > t∗.
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“Constant Effect” Model

In previous lecture, we discussed a simple model where an exposure or
treatment might cause a shift in the mean response that remains constant
across measurement occasions (e.g., Figure 11 on slide 212).

To fit such a model, we can create a new variable for time:

Posttimeij = 0 if baseline (Timeij = 0),
Posttimeij = 1 if post-baseline (Timeij > 0).

Then, in two group setting, the model is:

E(Yij) = β1 + β2Groupi + β3Posttimeij + β4Posttimeij ×Groupi.
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This model tests whether the differences between the group means, averaged
over the (n − 1) post-baseline measurement occasions, are significantly
different from the corresponding differences at baseline.

That is, the hypothesis of no group effect on longitudinal change
corresponds to the test of no group by post-baseline interaction.

In general, this test has (G− 1) d.f., where G is the number of groups.
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Case Study 1: Vlagtwedde-Vlaardingen Study

Epidemiologic study on prevalence of and risk factors for chronic obstructive
lung disease.

Sample participated in follow-up surveys approximately every 3 years for
up to 21 years.

Pulmonary function was determined by spirometry: FEV1.

We focus on a subset of 133 residents aged 36 or older at their entry into
the study and whose smoking status did not change over the 19 years of
follow-up.

Each study participant was either a current or former smoker.
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Figure 15: Mean FEV1 at baseline (year 0), year 3, year 6, year 9, year 12,
year 15, and year 19 in the current and former smoking exposure groups.
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First we consider a linear trend in the mean response over time, with
intercepts and slopes that differ for the two smoking exposure groups.

We assume an unstructured covariance matrix.

Based on the REML estimates of the regression coefficients in Table 23, the
mean response for former smokers is

E (Yij) = 3.507− 0.033 Timeij,

while for current smokers,

E (Yij) = (3.507− 0.262)− (0.033 + 0.005) Timeij

= 3.245− 0.038 Timeij.
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Table 23: Estimated regression coefficients for linear trend model for FEV1

data from the Vlagtwedde-Vlaardingen study.

Variable Smoking Group Estimate SE Z

Intercept 3.5073 0.1004 34.94
Smokei Current −0.2617 0.1151 −2.27
Timeij −0.0332 0.0031 −10.84
Smokei × Timeij Current −0.0050 0.0035 −1.42
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Thus, both groups have a significant decline in mean FEV1 over time.

But there is no discernible difference between the two smoking exposure
groups in the constant rate of change.

That is, the Smokei × Timeij interaction (i.e., the comparison of the two
slopes) is not significant, with Z = −1.42, p > 0.15.

But is the rate of change constant over time?

Adequacy of linear trend model can be assessed by including higher-order
polynomial trends.
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For example, we can consider a model that allows quadratic trends for
changes in FEV1 over time.

Recall that linear trend model is nested within the quadratic trend model.

The maximized log-likelihoods for the models with linear and quadratic
trends are presented in Table 24.

LRT test statistic can be compared to a chi-squared distribution with 2
degrees of freedom (or 6, the number of parameters in the quadratic trend
model, minus 4, the number of parameters in the linear trend model).

Note: Likelihood ratio test is based on the ML, not REML, log-likelihood.
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Table 24: Maximized (ML) log-likelihoods for models with linear and
quadratic trends for FEV1 data from the Vlagtwedde-Vlaardingen study.

Model −2 (ML) Log-Likelihood

Quadratic Trend Model 237.2

Linear Trend Model 238.5

−2 × Log-Likelihood Ratio: G2 = 1.3, 2 df (p > 0.50)

257



LRT comparing quadratic and linear trend models, produces G2 = 1.3, with
2 degrees of freedom (p > 0.50).

Thus, when compared to quadratic trend model, linear trend model appears
to be adequate.

Finally, for illustrative purposes, we can make a comparison with a cubic
trend model.

This produces LRT statistic, G2 = 4.4, with 4 degrees of freedom (p > 0.35),
indicating again that the linear trend model is adequate.
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Case Study 2: Treatment of Lead-Exposed Children Trial

Recall data from TLC trial:

Children randomized to placebo or Succimer.

Measures of blood lead level at baseline, 1, 4 and 6 weeks.

The sequence of means over time in each group is displayed in Figure 16.
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Figure 16: Mean blood lead levels at baseline, week 1, week 4, and week 6
in the succimer and placebo groups.
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Given that there are non-linearities in the trends over time, higher-order
polynomial models (e.g., a quadratic trend model) could be fit to the data.

Alternatively, we can accommodate the non-linearity with a piecewise linear
model with common knot at week 1,

E (Yij) = β1 + β2 Weekij + β3 (Weekij − 1)+ + β4 Groupi × Weekij

+ β5 Groupi × (Weekij − 1)+,

where Groupi = 1 if assigned to succimer, and Groupi = 0 otherwise.

Because of randomization, model does not contain a main effect of Group.

That is, we assume a common mean blood lead level at baseline.
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In this piecewise linear model, means for subjects in placebo group are

E (Yij) = β1 + β2 Weekij + β3 (Weekij − 1)+,

while in the succimer group

E (Yij) = β1 + (β2 + β4) Weekij + (β3 + β5) (Weekij − 1)+.
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Table 25: Estimated regression coefficients and standard errors based on a
piecewise linear model, with knot at week 1.

Variable Group Estimate SE Z

Intercept 26.3422 0.4991 52.78
Weekij −1.6296 0.7818 −2.08
(Weekij − 1)+ 1.4305 0.8777 1.63
Group× Weekij A −11.2500 1.0924 −10.30
Group× (Weekij − 1)+ A 12.5822 1.2278 10.25
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When expressed in terms of mean response prior to/after week 1, estimated
means in the placebo group are

µ̂ij = β̂1 + β̂2 Weekij, Weekij ≤ 1;

µ̂ij = (β̂1 − β̂3) + (β̂2 + β̂3) Weekij, Weekij > 1.

Thus, in the placebo group, slope prior to week 1 is β̂2 = −1.63 and
following week 1 is (β̂2 + β̂3) = −1.63 + 1.43 = −0.20.
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Similarly, when expressed in terms of the mean response prior to and after
week 1, the estimated means for subjects in the succimer group are given
by

µ̂ij = β̂1 + (β̂2 + β̂4) Weekij, Weekij ≤ 1;

µ̂ij = β̂1 − (β̂3 + β̂5)

+ (β̂2 + β̂3 + β̂4 + β̂5) Weekij, Weekij > 1.
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The estimates of the mean blood lead levels for the placebo and succimer
groups are presented in Table 26.

The estimated means from the piecewise linear model appear to adequately
fit the observed mean response profiles for the two treatment groups.

Note that piecewise linear and quadratic trend models (with common
intercept for two groups) are not nested.

They both have the same number of parameters and therefore their
respective log-likelihoods can be directly compared.

The maximized log-likelihoods indicate that piecewise linear model fits these
data better than quadratic trend model (−2 ML log-likelihood = 2436.2 for
piecewise linear model versus −2 ML log-likelihood = 2551.7 for quadratic
trend model).
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Table 26: Estimated mean blood lead levels for placebo and succimer groups
from linear spline model (knot at week 1). Observed means in parentheses.

Group Week 0 Week 1 Week 4 Week 6

Succimer 26.3 13.5 16.7 19.1
(26.5) (13.5) (15.5) (20.8)

Placebo 26.3 24.7 24.1 23.7
(26.3) (24.7) (24.1) (23.2)
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Parametric Curves using PROC MIXED in SAS

Table 27: Illustrative commands for a linear trend model using PROC
MIXED in SAS.

PROC MIXED;
CLASS id group t;
MODEL y=group time group*time / SOLUTION CHISQ;
REPEATED t / TYPE=UN SUBJECT=id R RCORR;
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Note that the CLASS statement includes a variable t. This variable is an
additional copy of the variable time.

The difference is that while t is declared as a categorical variable on the
CLASS statement, time is not and is treated as a quantitative covariate in
the MODEL statement.

It is good practice to include, wherever possible, a REPEATED effect.

This ensures covariance is estimated correctly when the design is balanced
but incomplete due to missingness or when repeated measures are not in
same order for each subject in data set.

269



Table 28: Illustrative commands for a quadratic trend model using PROC
MIXED in SAS.

PROC MIXED;
CLASS id group t;
MODEL y=group time timesqr group*time group*timesqr /S CHISQ;
REPEATED t / TYPE=UN SUBJECT=id R RCORR;
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Table 29: Illustrative commands for a spline model, with knot at time = 4,
using PROC MIXED in SAS.

PROC MIXED;
CLASS id group t;
MODEL y=group time time 4 group*time group*time 4 /S CHISQ;
REPEATED t / TYPE=UN SUBJECT=id R RCORR;

The MODEL statement includes time and time 4, where time 4 is a derived
variable for (time− 4)+.

The latter variable can easily be computed in SAS as

time 4 = max(time− 4, 0);
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Modelling the Covariance

Longitudinal data present two aspects of the data that require modelling:
mean response over time and covariance.

Although these two aspects of the data can be modelled separately, they
are interrelated.

Choice of models for mean response and covariance are interdependent.

A model for the covariance must be chosen on the basis of some assumed
model for the mean response.

Recall: Covariance between any pair of residuals, say [Yij − µij(β)] and
[Yik − µik(β)], depends on the model for the mean, i.e., depends on β.
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Modelling the Covariance

Three broad approaches can be distinguished:

(1) “unstructured” or arbitrary pattern of covariance

(2) covariance pattern models

(3) random effects covariance structure
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Unstructured Covariance

Appropriate when design is “balanced” and number of measurement
occasions is relatively small.

No explicit structure is assumed other than homogeneity of covariance
across different individuals, Cov(Yi) = Σi = Σ.

Chief advantage: no assumptions made about the patterns of variances and
covariances.
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With n measurement occasions, “unstructured” covariance matrix has
n×(n+1)

2 parameters:

the n variances and n× (n− 1)/2 pairwise covariances (or correlations),

Cov(Yi) =


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

... ... . . . ...
σn1 σn2 . . . σ2

n

 .
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Potential drawbacks:

Number of covariance parameters grows rapidly with the number of
measurement occasions:

For n = 3 number of covariance parameters is 6

For n = 5 number of covariance parameters is 15

For n = 10 number of covariance parameters is 55

When number of covariance parameters is large, relative to sample size,
estimation is likely to be very unstable.

Use of an unstructured covariance is appealing only when N is large relative
to n×(n+1)

2 .

Unstructured covariance is problematic when there are mistimed
measurements.
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Covariance Pattern Models

When attempting to impose some structure on the covariance, a subtle
balance needs to be struck.

With too little structure there may be too many parameters to be estimated
with limited amount of data.

With too much structure, potential risk of model misspecification and
misleading inferences concerning β.

Classic tradeoff between bias and variance.

Covariance pattern models have their basis in models for serial correlation
originally developed for time series data.
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Compound Symmetry

Assumes variance is constant across occasions, say σ2, and
Corr(Yij, Yi,k) = ρ for all j and k.

Cov(Yi) = σ2


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
... ... ... . . . ...
ρ ρ ρ . . . 1

 .

Parsimonious: two parameters regardless of number of measurement
occasions.

Strong assumptions about variance and correlation are usually not valid
with longitudinal data.
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Toeplitz

Assumes variance is constant across occasions, say σ2, and
Corr(Yij, Yi,j+k) = ρk for all j and k.

Cov(Yi) = σ2


1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ1 . . . ρn−2

ρ2 ρ1 1 . . . ρn−3
... ... ... . . . ...

ρn−1 ρn−2 ρn−3 . . . 1

 .

Assumes correlation among responses at adjacent measurement occasions
is constant, ρ1.
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Toeplitz only appropriate when measurements are made at equal (or
approximately equal) intervals of time.

Toeplitz covariance has n parameters (1 variance parameter, and n − 1
correlation parameters).

A special case of the Toeplitz covariance is the (first-order) autoregressive
covariance.
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Autoregressive

Assumes variance is constant across occasions, say σ2, and
Corr(Yij, Yi,j+k) = ρk for all j and k, and ρ ≥ 0.

Cov(Yi) = σ2


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

... ... ... . . . ...
ρn−1 ρn−2 ρn−3 . . . 1

 .

Parsimonious: only 2 parameters, regardless of number of measurement
occasions.

Only appropriate when the measurements are made at equal (or
approximately equal) intervals of time.
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Compound symmetry, Toeplitz and autoregressive covariances assume
variances are constant across time.

This assumption can be relaxed by considering versions of these models
with heterogeneous variances, Var(Yij) = σ2

j .

A heterogeneous autoregressive covariance pattern:

Cov(Yi) =


σ2

1 ρσ1σ2 ρ2σ1σ3 . . . ρn−1σ1σn
ρσ1σ2 σ2

2 ρσ2σ3 . . . ρn−2σ2σn
ρ2σ1σ3 ρσ2σ3 σ2

3 . . . ρn−3σ3σn
... ... ... . . . ...

ρn−1σ1σn ρn−2σ2σn ρn−3σ3σn . . . σ2
n

 ,

and has n + 1 parameters (n variance parameters and 1 correlation
parameter).
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Banded

Assumes correlation is zero beyond some specified interval.

For example, a banded covariance pattern with a band size of 3 assumes
that Corr(Yij, Yi,j+k) = 0 for k ≥ 3.

It is possible to apply a banded pattern to any of the covariance pattern
models considered so far.
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A banded Toeplitz covariance pattern with a band size of 2 is given by,

Cov(Yi) = σ2


1 ρ1 0 . . . 0
ρ1 1 ρ1 . . . 0
0 ρ1 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 ,

where ρ2 = ρ3 = · · · = ρn−1 = 0.

Banding makes very strong assumption about how quickly the correlation
decays to zero with increasing time separation.
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Exponential

When measurement occasions are not equally-spaced over time,
autoregressive model can be generalized as follows.

Let {ti1, ..., tin} denote the observation times for the ith individual and
assume that the variance is constant across all measurement occasions, say
σ2, and

Corr(Yij, Yik) = ρ|tij−tik|,

for ρ ≥ 0.

Correlation between any pair of repeated measures decreases exponentially
with the time separations between them.
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Referred to as “exponential” covariance because it can be re-expressed as

Cov(Yij, Yik) = σ2ρ|tij−tik|
= σ2 exp (−θ |tij − tik|) ,

where θ = − log(ρ) or ρ = exp (−θ) for θ ≥ 0.

Exponential covariance model is invariant under linear transformation of
the time scale.

If we replace tij by (a+ btij) (e.g., if we replace time measured in “weeks”
by time measured in “days”), the same form for the covariance matrix holds.
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Choice among Covariance Pattern Models

Choice of models for covariance and mean are interdependent.

Choice of model for covariance should be based on a “maximal” model for
the mean that minimizes any potential misspecification.

With balanced designs and a very small number of discrete covariates,
choose “saturated model” for the mean response.

Saturated model: includes main effects of time (regarded as a within-subject
factor) and all other main effects, in addition to their two- and higher-way
interactions.
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Maximal model should be in a certain sense the most elaborate model for
the mean response that we would consider from a subject-matter point of
view.

Once maximal model has been chosen, residual variation and covariation
can be used to select appropriate model for covariance.

For nested covariance pattern models, a likelihood ratio test statistic can
be constructed that compares “full” and “reduced” models.
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Recall: two models are said to be nested when the “reduced” model is a
special case of the “full” model.

For example, compound symmetry model is nested within the Toeplitz
model, since if the former holds the latter must necessarily hold, with
ρ1 = ρ2 = · · · = ρn−1.

Likelihood ratio test is obtained by taking twice the difference in the
respective maximized REML log-likelihoods,

G2 = 2(l̂full − l̂red),

and comparing statistic to a chi-squared distribution with df equal to
difference between the number of covariance parameters in full and reduced
models.
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To compare non-nested model, an alternative approach is the Akaike
Information Criterion (AIC).

According to the AIC, given a set of competing models for the covariance,
one should select the model that minimizes

AIC = −2(maximized log-likelihood) + 2(number of parameters)
= −2(l̂− c),

where l̂ is the maximized REML log-likelihood and c is the number of
covariance parameters.
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Example: Exercise Therapy Trial

• subjects were assigned to one of two weightlifting programs to increase
muscle strength.

• treatment 1: number of repetitions of the exercises was increased as
subjects became stronger.

• treatment 2, number of repetitions was held constant but amount of
weight was increased as subjects became stronger.

• Measurements of body strength were taken at baseline and on days 2, 4,
6, 8, 10, and 12.

• We focus only on measures of strength obtained at baseline (or day 0)
and on days 4, 6, 8, and 12.
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Before considering models for the covariance, it is necessary to choose a
maximal model for the mean response.

We chose maximal model to be the saturated model for the mean.

First, we consider an unstructured covariance matrix.

Note that the variance appears to be larger by the end of the study when
compared to the variance at baseline.

Correlations decrease as the time separation between the repeated measures
increases.
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Table 30: Estimated unstructured covariance matrix for the strength data
at baseline, day 4, day 6, day 8, and day 12.

Day 0 4 6 8 12

0 9.668 10.175 8.974 9.812 9.407
4 10.175 12.550 11.091 12.580 11.928
6 8.974 11.091 10.642 11.686 11.101
8 9.812 12.580 11.686 13.990 13.121
12 9.407 11.928 11.101 13.121 13.944
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Table 31: Estimated unstructured correlation matrix for the strength data
at baseline, day 4, day 6, day 8, and day 12.

Day 0 4 6 8 12

0 1.0000 0.9237 0.8847 0.8437 0.8102
4 0.9237 1.0000 0.9597 0.9494 0.9017
6 0.8847 0.9597 1.0000 0.9577 0.9113
8 0.8437 0.9494 0.9577 1.0000 0.9394
12 0.8102 0.9017 0.9113 0.9394 1.0000
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Despite apparent increase in variance over time, we consider an
autoregressive model for the correlation.

Assume variance is constant across occasions, say σ2, and
Corr(Yij, Yi,j+k) = ρk for all j and k, and ρ ≥ 0.

This results in the following estimates of the variance and correlation
parameters, σ̂2 = 11.87 and ρ̂ = 0.94.

This model was fit primarily for illustrative purposes; the model is not very
appropriate as data are unequally spaced over time.
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Table 32: Estimated autoregressive correlation matrix for the strength data
at baseline, day 4, day 6, day 8, and day 12.

Day 0 4 6 8 12

0 1.0000 0.9402 0.8839 0.8311 0.7813
4 0.9402 1.0000 0.9402 0.8839 0.8311
6 0.8839 0.9402 1.0000 0.9402 0.8839
8 0.8311 0.8839 0.9402 1.0000 0.9402
12 0.7813 0.8311 0.8839 0.9402 1.0000
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Instead, consider exponential model for the covariance, where

Corr(Yij, Yik) = ρ|tij−tik|,

for ti = (0, 4, 6, 8, 12) for all subjects.

Results: σ̂2 = 11.87 and ρ̂ = 0.98.
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Table 33: Estimated exponential correlation matrix for the strength data
at baseline, day 4, day 6, day 8, and day 12.

Day 0 4 6 8 12

0 1.0000 0.9169 0.8780 0.8408 0.7709
4 0.9169 1.0000 0.9576 0.9169 0.8408
6 0.8780 0.9576 1.0000 0.9576 0.8780
8 0.8408 0.9169 0.9576 1.0000 0.9169
12 0.7709 0.8408 0.8780 0.9169 1.0000
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There is a hierarchy among the models: autoregressive and exponential are
both nested within unstructured.

The autoregressive and exponential models are not nested but have the
same number of parameters.

Any comparison between these two models can be made directly in terms
of their maximized log-likelihoods.

LRT comparing autoregressive and unstructured covariance,

G2 = 621.1− 597.3 = 23.8,

with 13 (or 15 - 2) degrees of freedom (p < 0.05).
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There is evidence that the autoregressive model does not provide an
adequate fit to the covariance.

LRT comparing exponential and unstructured covariance, yields

G2 = 618.5− 597.3 = 21.2,

and when compared to a chi-squared distribution with 13 degrees of
freedom, p > 0.05.

Exponential covariance provides an adequate fit to the data.

Also, in terms of AIC, the exponential model minimizes this criterion.
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Table 34: Comparison of the maximized (REML) log-likelihoods and AIC
for the covariance pattern models for the strength data from the exercise
therapy trial.

Covariance Pattern Model -2 (REML) Log-Likelihood AIC

Unstructured 597.3 627.3

Autoregressive 621.1 625.1

Exponential 618.5 622.5

302



Strengths/Weaknesses of Covariance Pattern Models

Covariance pattern models attempt to characterize the covariance with a
relatively small number of parameters.

However, many models (e.g., autoregressive, Toeplitz, and banded)
appropriate only when repeated measurements are obtained at equal
intervals and cannot handle irregularly timed measurements.

While there is a large selection of models for correlations, choice of models
for variances is limited.

They are not well-suited for modelling data from inherently unbalanced
longitudinal designs.

303



Table 35: Covariance pattern modelling options using PROC MIXED in
SAS.

TYPE = <pattern> Specifies the covariance pattern
UN Unstructured
CS Compound symmetry
AR(1) First-order autoregressive
TOEP Toeplitz
UN(n) Banded unstructured, with n bands
CSH Heterogeneous compound symmetry
ARH(1) Heterogeneous first-order autoregressive
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Table 36: Illustrative commands for an autoregressive model using PROC
MIXED in SAS.

PROC MIXED;
CLASS id group time;
MODEL y=group time group*time /S CHISQ;
REPEATED time / TYPE=AR(1) SUBJECT=id R RCORR;
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Table 37: Illustrative commands for an exponential model
using PROC MIXED in SAS.

PROC MIXED;
CLASS id group time;
MODEL y=group time group*time /S CHISQ;
REPEATED time / TYPE=SP(EXP)(ctime) SUBJECT=id R RCORR;
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Synthesis of Ideas for Analyzing Longitudinal Data

Primary goal of a longitudinal study is to characterize the change in
response over time and the factors that influence change.

Longitudinal data require somewhat more sophisticated statistical
techniques because: (i) repeated measures on the same individual are
usually positively correlated, and (ii) variability is often heterogeneous
across measurement occasions.

Correlation and heterogeneous variability must be accounted for in order
to obtain valid inferences about change in response over time.
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General Linear Model for
Longitudinal Data

So far, we have considered linear regression models that

• permit individuals to be measured on different number of occasions and
at different times

• can handle mixed discrete and continuous covariates

• allow a range of different covariance structures

309



Specifically, we assume there are ni repeated measurements on the ith

subject and each Yij is observed at time tij.

Associated with Yij there is a p× 1 vector of covariates

Xij =


Xij1

Xij2
...

Xijp

 , i = 1, ..., N ; j = 1, ..., ni.

Note: Information about the time of observation, treatment or exposure
group, and other predictor and confounding variables can be expressed
through this vector of covariates.
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We consider linear regression models for changes in the mean response over
time:

Yij = β1Xij1 + β2Xij2 + · · ·+ βpXijp + eij, j = 1, ..., ni;

where β1, ..., βp are unknown regression coefficients.

The eij are random errors, with mean zero, and represent deviations of the
Yij’s from their means,

E(Yij|Xij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp.

This model can also be represented in vector/matrix notation as:

E(Yi|Xi) = Xiβ.
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Assumptions

(1) The individuals represent a random sample from the population of
interest.

(2) Observations from different individuals are independent, while repeated
measurements of the same individual are not assumed to be independent.

(3) The elements of the vector of repeated measures Yi1, . . . , Yini, have a
Multivariate Normal (MVN) distribution, with means

µij = E(Yij|Xij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp

and covariance matrix Σi3.
(4) If there are missing data they are assumed to be “ignorable”, i.e., MAR

or MCAR.

3Covariance matrix is indexed by i to permit individuals to have different numbers of repeated measures, ni

312



Modelling Longitudinal Data

Longitudinal data present two aspects of the data that require modelling:

(1) mean response over time

(2) covariance among repeated measures

Models for longitudinal data must jointly specify models for the mean and
covariance.
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Modelling the Mean

Two main approaches can be distinguished:

(1) analysis of response profiles

(2) parametric or semi-parametric curves.
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Modelling the Covariance

Three broad approaches can be distinguished:

(1) “unstructured” or arbitrary pattern of covariance

(2) covariance pattern models

(3) random effects covariance structure (discussed in next lecture)
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Modelling Longitudinal Data

We have stressed that, in fitting linear models to longitudinal data, we have
two modeling tasks:

(a) We must choose a covariance model that provides a good fit to the
observed variances and covariances.

(b) We must fit a linear regression model that provides a good fit to the
mean of the outcome variable.

Because the models for the mean and covariance are interdependent, we
need to have a coherent strategy for model fitting.
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Choosing a Covariance Structure

The choices of models for the mean and covariance are interdependent.

Since the residuals depend on the specification of the linear model for the
mean, we choose a covariance structure for a particular linear model.

Substantial changes in the linear model could lead to a different choice of
model for the covariance.
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A balance needs to be struck:

With too little structure (e.g., unstructured), there may be too many
parameters to be estimated with the limited amount of data available.
This would leave too little information available for estimating β

⇒ weaker inferences concerning β.

With too much structure (e.g., compound symmetry), there is more
information available for estimating β.
However, there is a potential risk of model misspecification

⇒ apparently stronger, but potentially biased, inferences concerning β.
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General Strategy for Model Fitting

(1) To analyze longitudinal data we first need to choose a “working”
covariance structure.

We must recognize that choices of model for the mean and covariance are
interdependent.

Need to fit a “maximal model” for the mean response when
choosing/comparing models for the covariance.

Can use REML log likelihood or AIC as criteria to guide the choice of model
for the covariance.

When n is relatively small, and design is balanced, can simply use
unstructured covariance matrix unless simpler model is clearly satisfactory.
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When n is relatively large and/or there are mistimed measurements,
alternative models for the covariance will need to be considered.

(2) Given choice of “working” covariance, select model for mean response.
Need to decide how to model the pattern of change in the mean response:

(a) covariate by time interaction(s), where time is regarded as a categorical
variable (analysis of response profiles)

(b) covariate by time interaction(s), where means are modeled as an explicit
function of continuous time (parametric and semi-parametric curves)

(c) covariate effects in an analysis that includes the baseline measure as a
covariate (e.g., randomized study)

(d) covariate by post-baseline time (posttime) interaction(s) in a “constant
effect” model

Use the ML log likelihood to compare nested models for the mean differing
by several degrees of freedom.
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(3) Make an initial determination of the final form of the regression model.

(4) If necessary, re-fit the final regression model using REML to obtain
standard errors.
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Empirical Variance Estimation

We have focused on regression models for longitudinal data where the
primary interest is in making inference about the regression parameters
β.

For statistical inference about β we need

(i) an estimate, β̂
(ii) estimated standard error, SE(β̂)

So far, we have made inferences about β using standard errors obtained
under an assumed model for the covariance structure.

This approach is potentially problematic if the assumed covariance has been
mis-specified.
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How might the covariance be mis-specified?

For example, compound symmetry might be assumed but the correlations
in fact decline over time.

Alternatively, an unstructured covariance might be assumed but the
covariances also depend upon the treatment group.

If the assumed covariance has been mis-specified, we can correct the
standard errors by using “empirical” or so-called “robust” variances.
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Recall, the REML estimator of β is given by

β̂ =

[
N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1 N∑
i=1

(
X ′iΣ̂

−1Yi

)

where Σ̂ is the REML estimate of Σ.

It has covariance matrix,

Cov(β̂) =[
N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1 N∑
i=1

(
X ′iΣ̂

−1Cov (Yi) Σ̂−1Xi

)[ N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1
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If Cov(Yi) is replaced by Σ̂, the REML estimate of Σ, Cov(β̂) can be
estimated by [

N∑
i=1

(
X ′iΣ̂

−1Xi

)]−1

However, if the covariance has been mis-specified then an alternative
estimator for Cov (Yi) is needed.

The empirical or so-called robust variance of β̂ is obtained by using

V̂i =
(
Yi −Xiβ̂

)(
Yi −Xiβ̂

)′
as an estimate of Cov (Yi).
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Thus, the empirical variance of β̂ is estimated by

[
n∑
i=1

(
X ′iΣ̂

−1Xi

)]−1 n∑
i=1

(
X ′iΣ̂

−1V̂iΣ̂−1Xi

)[ n∑
i=1

(
X ′iΣ̂

−1Xi

)]−1

This empirical variance estimator is also known as the “sandwich
estimator”.

The remarkable thing about the empirical estimator of Cov(β̂) is that it
provides a consistent estimator of the variance even when the model for the
covariance matrix has been misspecified.

That is, in large samples the empirical variance estimator yields correct
standard errors.
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In general, its use should be confined to cases where N (number of
individuals) is relatively large and n (number of measurements) is relatively
small.

The empirical variance estimator may not be appropriate when there is
severe imbalance in the data.

In summary, (with large samples) the following procedure will produce valid
estimates of the regression coefficients and their standard errors:

(1) Choose a “working” covariance matrix of some convenient form.
(2) Estimate the regression coefficients under the assumed working

covariance matrix.
(3) Estimate the standard errors using the empirical variance estimator.
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Why not be a clever ostrich?
Why not simply ignore potential correlation among repeated measures
(i.e., put head in sand) and assume an independence “working” covariance.
Then, obtain correct standard errors using empirical variance estimator.

Why should we bother to explicitly model the covariance?

Reasons:
(1) Efficiency: The optimal (most precise) estimator of β uses the true

Cov (Yi). Given sufficient data, we can attempt to estimate Cov (Yi).
(2) When N (number of individuals) is not large relative to n (number of

measurements) the empirical variance estimator is not recommended.
(3) Missing values: The empirical variance estimator uses the replications

across individuals to estimate the covariance structure. This becomes
problematic when there are missing data or when the times of
measurement are not common.

In general, it is advantageous to model the covariance.
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Table 38: Illustrative commands for an exponential model,
with empirical standard errors, using PROC MIXED in SAS.

PROC MIXED EMPIRICAL;
CLASS id group time;
MODEL y=group time group*time /S CHISQ;
REPEATED time / TYPE=SP(EXP)(ctime) SUBJECT=id R RCORR;
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Linear Mixed Effects Models for Longitudinal Data

Motivating Example: Influence of Menarche on Changes in Body Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Figure 17: Timeplot of percent body fat against age (in years).
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is almost “balanced” if timing of measurement is defined as
time since baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 18: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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LINEAR MIXED EFFECTS MODELS

Basic idea: Individuals in population are assumed to have their own subject-
specific mean response trajectories over time.

Allow subset of the regression parameters to vary randomly from
one individual to another, thereby accounting for sources of natural
heterogeneity in the population.

Distinctive feature: mean response modelled as a combination of population
characteristics (fixed effects) assumed to be shared by all individuals, and
subject-specific effects (random effects) that are unique to a particular
individual.

The term mixed denotes that model contains both fixed and random effects.
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Linear Models for the Mean Response

The mean response can be modelled by a familiar regression model.

For example, with a linear trend over time, we may have

E(Yij) = µij = β1 + β2tij.

With additional covariates, this can be written more generally

E(Yij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp

where tij, or possibly functions of tij, have been incorporated into the
covariates, e.g., Xij1 = 1, Xij2 = tij, Xij3 = treatment group indicator,
and Xij4 = tij× treatment group indicator.
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Model for Covariance: Random Intercept Model

One traditional approach for handling the covariance among repeated
measures is to assume that it arises from a random subject effect.

That is, each subject is assumed to have an (unobserved) underlying level
of response which persists across all of his/her repeated measurements.

This subject effect is treated as random and the model becomes

Yij = β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + εij
= β1 + β2Xij2 + · · ·+ βpXijp + bi + εij,

assuming Xij1 = 1 for all i and j, or

Yij = (β1 + bi) + β2Xij2 + · · ·+ βpXijp + εij

(also known as “random intercept model”).
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In the model

Yij = β1 + β2Xij2 + · · ·+ βpXijp + bi + εij

the response for the ith subject at jth occasion is assumed to differ from
the population mean,

µij = E(Yij) = β1 + β2Xij2 + · · ·+ βpXijp

by a subject effect, bi, and a within-subject measurement error, εij.

Furthermore, it is assumed that

bi ∼ N(0, σ2
b); εij ∼ N(0, σ2)

and that bi and εij are mutually independent.
Note: Assumption of normality not always necessary.
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Figure 19 provides graphical representation of linear trend model:

Yij = (β1 + bi) + β2tij + εij

Overall mean response over time in the (sub)population changes linearly
with time (denoted by the solid line).

Subject-specific mean responses for two specific individuals, subjects A and
B, deviate from the (sub)population trend (denoted by the broken lines).

Individual A responds “higher” than the (sub)population average and thus
has a positive bi.

Individual B responds “lower” than the (sub)population average and has a
negative bi.

Inclusion of measurement errors, εij, allows response at any occasion to
vary randomly above/below subject-specific trajectories (see Figure 20).
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Figure 19: Graphical representation of the overall and subject-specific mean
responses over time.
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Figure 20: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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Covariance/Correlation Structure

The introduction of a random subject effect induces correlation among the
repeated measures.

If Var (bi) = σ2
b and Var (εij) = σ2, the covariance matrix of the repeated

measurements has the compound symmetry form:



σ2
b + σ2 σ2

b σ2
b . . . σ2

b

σ2
b σ2

b + σ2 σ2
b . . . σ2

b

σ2
b σ2

b σ2
b + σ2 . . . σ2

b

. . . . . . .

. . . . . . .
σ2
b σ2

b σ2
b . . . σ2

b + σ2



342



Var(Yij) = σ2
b + σ2

Cov(Yij, Yik) = σ2
b =⇒ Corr(Yij, Yik) =

σ2
b

σ2
b + σ2

This is the correlation among pairs of observations on the same individual.

Note: The introduction of a random subject effect, bi, induces correlation
among the repeated measurements.

The compound symmetry model is the simplest possible example of a mixed
effect model.

Potential Drawback: Variances and correlations are assumed to be constant.

Solution: Allow for heterogeneity is trends over time =⇒ random intercepts
and slopes.
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Extension: Random Intercept and Slope Model

Consider a model with intercepts and slopes that vary randomly among
individuals,

Yij = β1 + β2tij + b1i + b2itij + εij, j = 1, ..., ni,

where tij denotes the timing of the jth response on the ith subject.

This model posits that individuals vary not only in their baseline level of
response (when ti1 = 0), but also in terms of their changes in the response
over time (see Figure 21).

The effects of covariates (e.g., due to treatments, exposures) can be
incorporated by allowing mean of intercepts and slopes to depend on
covariates.
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Figure 21: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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For example, consider two-group study comparing a treatment and a control
group:

Yij = β1 + β2tij + β3trti + β4tij × trti + b1i + b2itij + εij,

where trti = 1 if the ith individual assigned to treatment group, and trti = 0
otherwise.

The model can be re-expressed as follows for the control group and treatment
group respectively:

trt = 0: Yij = (β1 + b1i) + (β2 + b2i)tij + εij,

trt = 1: Yij = (β1 + β3 + b1i) + (β2 + β4 + b2i)tij + εij,
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Finally, consider the covariance induced by the introduction of random
intercepts and slopes.

Assuming b1i ∼ N(0, σ2
b1

), b2i ∼ N(0, σ2
b2

) (with Cov(b1i, b2i) = σb1,b2) and
εij ∼ N(0, σ2), then

Var (Yij) = Var (b1i + b2itij + εij)
= Var(b1i) + 2tijCov(b1i, b2i) + t2ijVar(b2i) + Var(εij)
= σ2

b1
+ 2tijσb1,b2 + t2ijσ

2
b2

+ σ2.

Similarly, it can be shown that

Cov (Yij, Yik) = σ2
b1

+ (tij + tik)σb1,b2 + tijtikσ
2
b2
.

Thus, in this mixed effects model for longitudinal data the variances and
correlations (covariance) are expressed as an explicit function of time, tij.
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Linear Mixed Effects Model

Can allow any subset of the regression parameters to vary randomly.

Using vector notation, the linear mixed effects model can be expressed as

Yij = X ′ijβ + Z ′ijbi + εij,

where bi is a (q × 1) vector of random effects and Zij is the vector of
covariates linking the random effects to Yij.

Note: Components of Zij are a subset of the covariate in Xij.

For example, consider the random intercepts and slopes model introduced
earlier,

Yij = β1 + β2tij + β3trti + β4tij × trti + b1i + b2itij + εij.

In this model, Xij = [1 tij trti tij ∗ trtij] and Zij = [1 tij].
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In general, any component of β can be allowed to vary randomly by simply
including corresponding covariate in Zij.

The random effects, bi, are assumed to have a multivariate normal
distribution with mean zero and covariance matrix denoted by G,

bi ∼ N(0, G).

For example, in the random intercepts and slopes model,

Yij = β1 + β2tij + β3trti + β4tij × trti + b1i + b2itij + εij,

G is a 2× 2 matrix with unique components g11 = Var(b1i),
g12 = Cov(b1i, b2i), and g22 = Var(b2i).
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The within-subject errors, εij, are assumed to have a multivariate normal
distribution with mean zero and covariance matrix denoted by Ri,

εij ∼ N(0, Ri).

Note: Usually, it is assumed that Ri = σ2I, where I is a (ni × ni) identity
matrix.

That is, when Ri = σ2I, the errors εij within a subject are uncorrelated,
with homogeneous variance.

⇒ “conditional independence assumption”.

In principle, a structured model for Ri could be assumed, e.g., AR(1).
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Conditional and Marginal Means

In the linear mixed effects model,

Yij = X ′ijβ + Z ′ijbi + εij,

there is an important distinction between the conditional mean,

E(Yij|Xij, bi) = X ′ijβ + Z ′ijbi,

and the marginal mean,

E(Yij|Xij) = X ′ijβ.

The former describes the mean response for an individual, the latter
describes the mean response averaged over individuals.
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The distinction between the conditional and marginal means is best
understood with a simple example.

Consider the simple random intercepts and slopes model,

Yij = β1 + β2tij + b1i + b2itij + εij,

In this model, we can distinguish the conditional mean for an individual,

E(Yij|b1i, b2i) = β1 + β2tij + b1i + b2itij,

(see broken lines for subjects A and B in Figure 22), and the marginal mean
averaged over individuals,

E(Yij) = β1 + β2tij,

(see solid line in Figure 22).
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Figure 22: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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Conditional and Marginal Covariance

Variation and covariation can also be defined relative to the conditional and
marginal means.

In the linear mixed effects model,

Yij = X ′ijβ + Z ′ijbi + εij,

the conditional variance, Var(Yij|Xij, bi) = Var(εij) = σ2 (when Ri = σ2I).

In contrast, the marginal covariance of the vector of responses Yi is

Cov(Yi|Xi) = ZiGZ
′
i +Ri = ZiGZ

′
i + σ2I.

Note: This matrix has non-zero off-diagonal elements (i.e., introduction of
random effects, bi, induces correlation marginally among the Yi).
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The distinction between conditional and marginal (co)variances is best
understood by considering the simple random intercepts and slopes model,

Yij = β1 + β2tij + b1i + b2itij + εij.

The conditional variance, Var(Yij|b1i, b2i) = Var(εij) = σ2, describes
variation in an individual’s observations around her subject-specific mean
(i.e., variation of observations around the broken line in Figure 23).

The marginal covariance describes (co)variation of the observations with
respect to the marginal mean (i.e., variation and covariation of observations
around the solid line in Figure 23):

Var (Yij) = σ2
b1

+ 2tijσb1,b2 + t2ijσ
2
b2

+ σ2.

Cov (Yij, Yik) = σ2
b1

+ (tij + tik)σb1,b2 + tijtikσ
2
b2
.
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Figure 23: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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Estimation: Maximum Likelihood

ML estimator of β1, β2, ..., βp is the generalized least squares (GLS) estimator
and depends on marginal covariance among the repeated measures (see
Lecture 5).

In general, there is no simple expression for ML estimator of the covariance
components - G and σ2 (or R) - requires iterative techniques.

Because ML estimation of covariance is known to be biased in small samples,
use restricted ML (REML) estimation instead.
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Example: Exercise Therapy Trial

• subjects were assigned to one of two weightlifting programs to increase
muscle strength.

• treatment 1: number of repetitions of the exercises was increased as
subjects became stronger.

• treatment 2, number of repetitions was held constant but amount of
weight was increased as subjects became stronger.

• Measurements of body strength were taken at baseline and on days 2, 4,
6, 8, 10, and 12.

• We focus only on measures of strength obtained at baseline (or day 0)
and on days 4, 6, 8, and 12.
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Example: Exercise Therapy Trial

Consider a model with intercepts and slopes that vary randomly among
subjects, and which allows the mean values of the intercept and slope to
differ in the two treatment groups.

To fit this model, use the following code:

PROC MIXED DATA = stren;
CLASS id trt;
MODEL y=trt time time*trt / S CHISQ;
RANDOM INTERCEPT time / TYPE=UN SUBJECT=ID G;
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Selected Output from PROC MIXED

Estimated G Matrix

Effect id col1 col2

Intercept 1 9.5469 0.05331
time 1 0.0533 0.02665

Residual: 0.6862

Fit Statistics

-2 Res Log Likelihood 632.0
AIC (smaller is better) 640.0
AICC (smaller is better) 640.2
BIC (smaller is better) 646.4
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Solution for Fixed Effects

Standard
Effect trt Estimate Error DF t Value Pr > |t|
Intercept 81.2396 0.6910 35 117.57 <.0001
trt 1 -1.2349 1.0500 99 -1.18 0.2424
trt 2 0 . . . .
time 0.1729 0.0427 35 4.05 0.0003
time*trt 1 -0.0377 0.0637 99 -0.59 0.5548
time*trt 2 0 . . . .
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Recall:

Cov (Yi) = ZiGZ ′i +Ri

= ZiGZ ′i + σ2I

Given estimates of G: [
9.54695 0.05331
0.05331 0.02665

]
and of Ri = σ2I = (0.6862)I,

and with

Zi =


1 0
1 4
1 6
1 8
1 12
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We can obtain the following estimate of Cov (Yi):
10.23 9.76 9.87 9.97 10.19
9.76 11.09 10.72 11.04 11.68
9.87 10.72 11.83 11.57 12.43
9.97 11.04 11.57 12.79 13.17

10.19 11.68 12.43 13.17 15.35


The corresponding correlation matrix is:

1.000 0.916 0.897 0.872 0.813
0.916 1.000 0.936 0.927 0.895
0.897 0.936 1.000 0.941 0.922
0.872 0.927 0.941 1.000 0.940
0.813 0.895 0.922 0.940 1.000


These can be obtained using the following options in PROC MIXED:
RANDOM INTERCEPT time / TYPE=UN SUBJECT=id G V VCORR;
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Based on the estimates of the fixed effects:

• the constant rate of increase in strength in group 1 is 0.173 per day

• the constant rate of increase in strength in group 2 is 0.135
(0.173− 0.038) per day

• the difference between these two rates, -0.038 (SE = 0.064) is not
statistically significant

There does not appear to be differences between the two groups in their
pattern of increase in strength.
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Two-Stage Random Effects Formulation

Recall main ideas underlying linear mixed effects models.

Basic idea: Individuals in population are assumed to have their own subject-
specific mean response trajectories over time.

Allow subset of the regression parameters to vary randomly from
one individual to another, thereby accounting for sources of natural
heterogeneity in the population.

Distinctive feature: mean response modelled as a combination of population
characteristics (fixed effects) assumed to be shared by all individuals, and
subject-specific effects (random effects) that are unique to a particular
individual.
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Linear Mixed Effects Model

Using vector notation, the linear mixed effects model can be expressed as

Yij = X ′ijβ + Z ′ijbi + εij, (j = 1, ..., ni)

where bi is a (q × 1) vector of random effects and Zij is the vector of
covariates linking the random effects to Yij.

The linear mixed model can be motivated by a two-stage formulation.

To help fix ideas, consider a simple example from an animal study designed
to compare clearance of iron particles from the lung and liver.
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Example
Feldman (1988) describes a study in which iron oxide particles were
administered to four rats by intravenous injection and to four other rats
by tracheal installation.

The injected particles were taken up by liver endothelial cells and the
installed particles by lung macrophages.

Each rat was followed for 30 days, during which time the quantity of iron
oxide remaining in the lung was measured by magnetometry.

The iron oxide content declined linearly on the logarithmic scale.

The goal of the study was to compare the rate of particle clearance by liver
endothelial cells and by lung macrophages.

Measurements during follow-up were expressed as a percentage of the
baseline value, with the baseline value constrained to equal 100%.

Thus, in the analysis we will want to drop the baseline value.
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Figure 24: Timeplot of Feldman’s clearance data.
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Two-Stage Formulation

Linear mixed effects models can be motivated in terms of the following two-
stage formulation of the model.

Basic idea: In the two-stage formulation of the model, we assume

1. A straight line (or curve) fits the observed responses for each subject
(first stage)

2. A regression model relating the mean of the individual intercepts and
slopes to subject-specific covariates (second stage)
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Stage 1

In the first stage subjects are assumed to have their own unique individual-
specific mean response trajectories,

Yij = Z ′ijβi + εij, (j = 1, ..., ni)

where βi is a vector of subject-specific regression parameters; the errors,
εij, are assumed to be independent within a subject.

For example, a simple model for subject-specific intercepts and slopes is
given by,

Yij = β1i + β2itij + εij.
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Thus, in stage 1 we posit a regression model with separate or distinct
coefficients for each individual.

This is equivalent to considering separate linear regression models for the
data for each individual.

Note: Covariates in Zij are restricted to only within-individual or time-
varying covariates (with the exception of the column of 1’s for the intercept).

Time-invariant or between-individual covariates (e.g., gender, treatment
group, exposure group) cannot be included in Zij; instead, they are
introduced in the second stage of the model formulation.
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Stage 2

In the second stage, we assume individual-specific effects, βi, are random.

The mean and covariance of the βi are the population parameters that are
modelled in the second stage.

Specifically, the subject-specific coefficients are regressed on other between-
subject covariates (e.g., gender, treatment group), say Ai,:

E(βi) = Aiβ.

The remaining covariation in the βi that cannot be explained by Ai is
expressed as

Cov(βi) = G.
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Alternatively, model can be written as

βi = Aiβ + bi,

where bi ∼ N(0, G).

For example, consider two-group setting and the simple model with subject-
specific intercepts and slopes.

Allowing both the mean intercept and slope to depend on group

E(β1i) = β1 + β2 Groupi

E(β2i) = β3 + β4 Groupi

where Groupi = 1 if the ith individual was assigned to the treatment, and
Groupi = 0 otherwise.
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In this model, β1 is the mean intercept in the control group, while β1 + β2

is the mean intercept in the treatment group.

Similarly, β3 is the mean slope in the control group, while β3 + β4 is the
mean slope in the treatment group.

In this model, the design matrix Ai of between-individual covariates has
the following form:

Ai =

 1 Groupi 0 0

0 0 1 Groupi

 .
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Thus, for the control group, the model for the mean is

E

 β1i

β2i

 =

 1 0 0 0

0 0 1 0




β1

β2

β3

β4


=

 β1

β3

 ;

similarly, for the treatment group, the model for the mean is

E

 β1i

β2i

 =

 1 1 0 0

0 0 1 1




β1

β2

β3

β4


=

 β1 + β2

β3 + β4

 .
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It is also assumed that there is residual variation in βi, that cannot be
explained by the effect of group,

βi = Aiβ + bi;

this is given by

Cov(βi|Ai) = Cov(bi) = G =

 g11 g12

g21 g22

 ,

where g11 = Var(b1i), g22 = Var(b2i), and g12 = g21 = Cov(b1i, b2i).

Thus, g11 is the variance of β1i, after adjusting for the effect of treatment
group, and so on.
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Finally, by combining the two components of the two-stage model, we obtain

Yij = Z ′ijβi + εij

= Z ′ij(Aiβ + bi) + εij

= (Z ′ijAi)β + Z ′ijbi + εij

= X ′ijβ + Z ′ijbi + εij,

where X ′ij = Z ′ijAi.

=⇒ Linear Mixed Effects Model (albeit with constraint, X ′ij = Z ′ijAi).
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Two-Stage Analysis: “NIH Method”

One classic approach with a long history for the analysis of longitudinal
data is known as two-stage or two-step analysis.

It is sometimes called the “NIH Method” because it was popularized by
statisticians working at NIH.

In two-stage method, we fit a straight line (or curve) to the response data
for each subject (stage 1), and then regress the estimates of the individual
intercepts and slopes on subject-specific covariates (stage 2).

One of the attractions of this method is that it is very easy to perform using
existing statistical software for linear regression.

We illustrate the method using Feldman’s clearance data.
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Structure of Dataset

ORGAN ID DAYS CFP LOGCFP

lung 1 3 102 2.00860
. . . . .
. . . . .
. . . . .

SAS Code for Two-Stage Analysis

FILENAME rats ’g:\shared\bio226\rat.txt’;

DATA clear;
INFILE rats;
INPUT organ $ id days cfp logcfp;
IF (days=0) THEN DELETE;

RUN;
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Two-Stage Analysis

Stage 1:

PROC REG DATA=clear OUTEST=coeffs NOPRINT;
BY id organ;
MODEL logcfp=days;

RUN;

Note: This creates the following two variables that are of interest, intercept
and days (the estimated intercepts and slopes respectively).
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PROC PRINT DATA=coeffs;
VAR id organ intercept days;

RUN;

OBS ID ORGAN INTERCEPT DAYS

1 1 lung 2.05235 -0.017569
2 2 lung 1.97683 -0.012858
3 3 lung 1.99249 -0.017565
4 4 lung 2.12824 -0.023480
5 26 liver 2.06173 -0.011100
6 28 liver 2.05379 -0.011425
7 30 liver 1.95025 -0.008306
8 31 liver 2.12560 -0.018886
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Figure 25: Timeplot of Feldman’s clearance data.
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Stage 2:

PROC GLM DATA=coeffs;
CLASS organ;
MODEL intercept=organ / SOLUTION;
TITLE ’ANOVA for the Intercepts’;

RUN;

PROC GLM DATA=coeffs;
CLASS organ;
MODEL days=organ / SOLUTION;
TITLE ’ANOVA for the Slopes’;

RUN;
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ANOVA for the Intercepts

General Linear Models Procedure

Dependent Variable: Intercept

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.00021482 0.00021482 0.04 0.8425
Error 6 0.02995984 0.00499331
Total 7 0.03017466

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 2.037476922 0.03533167 57.67 <.0001
Organ liver 0.010363771 0.04996652 0.21 0.8425
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ANOVA for the Slopes

General Linear Models Procedure

Dependent Variable: days

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.00005916 0.00005916 3.00 0.1339
Error 6 0.00011825 0.00001971
Total 7 0.00017741

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -.0178678950 0.00221968 -8.05 0.0002
Organ liver 0.0054387390 0.00313910 1.73 0.1339
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Estimated slope in the lung group is -0.0178, representing a half time for
clearance of 16.9 days (or log10(0.5)

−0.0178 ).

Estimated slope in the liver group is -0.0124 (-0.0178 + 0.0054), representing
a half time for clearance of 24.2 days.

The mean slopes in the two groups are not discernibly different (p = .13).

The mean intercepts do not differ significantly in the two groups (p = .84),
as would be expected given the normalization of each animal’s data to
baseline.

387



In summary, the two-stage analysis is easy to understand and nearly efficient
when the dataset is balanced and complete.

It is somewhat less attractive when the number and timing of observations
varies among subjects, because it does not take proper account of the
weighting.

In contrast, we can consider the mixed effects model corresponding to
the two-stage model, and obtain efficient (more precise) estimates of the
regression coefficients.
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Mixed Effects Model Representation

We can develop a mixed effects model in two stages corresponding to the
two-stage model:

Stage 1:
Yij = β1i + β2itij + εij

where β1i is the intercept for the ith subject,

β2i is the slope for the ith subject, and

errors, εij, are assumed to be independent and normally distributed around
the individual’s regression line, that is, εij ∼ N

(
0, σ2

)
.
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Stage 2:

Assume that the intercept and slope, β1i and β2i, are random and have a
joint multivariate normal distribution, with mean dependent on covariates
(e.g., the organ studied):

β1i = β1 + β2 Organ + b1i

β2i = β3 + β4 Organ + b2i

Also, let Var (b1i) = g11, Cov (b1i, b2i) = g12, Var (b2i) = g22.
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If we substitute the expressions for β1i and β2i into the equation in stage
1, we obtain

Yij = β1 + β2 Organ + β3tij + β4 Organ × tij
+b1i + b2itij + εij

The first four terms give the regression model for the mean response implied
by the two-stage model.

The last three terms are the “error terms” (between and within-subject).

This model can be fit using the RANDOM statement in PROC MIXED.

391



PROC MIXED in SAS

FILENAME rats ’g:\shared\bio226\rat.txt’;

DATA clear;
INFILE rats;
INPUT organ $ id days cfp logcfp;
IF (days=0) THEN DELETE;

RUN;

PROC MIXED DATA=clear;
CLASS id organ;
MODEL logcfp=days organ days*organ / S CHISQ;
RANDOM INTERCEPT days /

TYPE=UN SUBJECT=ID G;
TITLE ’Random Slopes and Intercepts’;

RUN;
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Random Slopes and Intercepts

Estimated G Matrix

Parameter ID Row col1 col2

Intercept 1 1 0.002851 -0.00015
days 1 2 -0.00015 9.65E-6

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

UN(1,1) ID 0.002851
UN(2,1) ID -0.00015
UN(2,2) ID 9.65E-6
Residual 0.003155
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Random Slopes and Intercepts
Solution for Fixed Effects

Standard
Effect organ Estimate Error DF t Value Pr > |t|
Intercept 2.0375 0.03337 6 61.05 <.0001
days -0.01785 0.001913 6 -9.33 <.0001
organ liver 0.003814 0.04741 37 0.08 0.9363
organ lung 0 . . . .
days*organ liver 0.006232 0.002760 37 2.26 .0299
days*organ lung 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square Pr > ChiSq

days 1 6 114.05 <.0001
organ 1 37 0.01 0.9359
days*organ 1 37 5.10 0.0239
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In contrast to results from two-stage analysis, results suggest that mean
clearance of foreign particles is faster from the lung.

Estimated slope in the lung group is -0.0178, representing a half time for
clearance of 16.9 days (or log10(0.5)

−0.0178 ).

Estimated slope in the liver group is -0.0116 (-0.0178 + 0.0062), representing
a half time for clearance of 26.0 days.

The mean slopes in the two groups are different (p < 0.05).
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Side-by-Side Comparison of Results

Two-Stage GC
(Mixed Effects)

Intercept 2.0375 (.0353) 2.0375 (.0334)
Day -0.0178 (.0022) -0.0179 (.0019)
Organ 0.0104 (.0450) 0.0038 (.0474)
Organ*Time 0.0054 (.0031) 0.0062 (.0027)

396



Summary

The two-stage method is less attractive when the number and timing of
observations varies among subjects, because it does not take proper account
of the weighting.

Also, note that the two-stage formulation of the growth curve model imposes
certain restrictions and structure on the covariates.

That is, in the two-stage approach covariates at the first stage (except for
the intercept) must be time-varying, while covariates at the second stage
must be time-invariant.

In contrast, in the mixed effects model the only restriction is that the
components of Zij are a subset of the components of Xij.
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Linear Mixed Effects Model and Prediction

Recall that in the linear mixed effects model,

Yij = X ′ijβ + Z ′ijbi + εij,

we can distinguish between the conditional mean,

E(Yij|Xij, bi) = X ′ijβ + Z ′ijbi,

and the marginal mean,

E(Yij|Xij) = X ′ijβ.

The former describes the mean response for an individual, the latter
describes the mean response averaged over individuals.
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The distinction between the conditional and marginal means is best
understood with a simple example.

Consider the simple random intercepts and slopes model,

Yij = β1 + β2tij + b1i + b2itij + εij,

In this model, we can distinguish the conditional mean for an individual,

E(Yij|b1i, b2i) = β1 + β2tij + b1i + b2itij,

(see broken lines for subjects A and B in Figure 26), and the marginal mean
averaged over individuals,

E(Yij) = β1 + β2tij,

(see solid line in Figure 26).
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Figure 26: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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Prediction of Random Effects

In many applications, inference is focused on fixed effects, β1, β2, ..., βp.

However, we can also “estimate” or predict subject-specific effects, bi (or
subject-specific response trajectories over time).

Technically, because the bi are random, we customarily talk of “predicting”
the random effects rather than “estimating” them.

Using maximum likelihood, the prediction of bi, say b̂i, is given by:

b̂i = E(bi|Yi; β̂, Ĝ, σ̂2).

This is known as “best linear unbiased predictor” (or BLUP).

In general, BLUP “shrinks” predictions towards population-averaged mean.
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For example, consider the random intercept model

Yij = β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + εij,

where Var (bi) = σ2
b and Var (εij) = σ2.

It can be shown that the BLUP for bi is:

b̂i = w ×

 1
ni

ni∑
j=1

(Yij − µij)

+ (1− w)× 0, where w =
niσ

2
b

niσ2
b + σ2

.

That is, a weighted-average of zero (mean of bi) and the mean “residual”
for the ith subject.

Note: Less shrinkage (toward zero) when ni is large and when σ2
b is large

relative to σ2.
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For the general case, the prediction of bi is given by:

b̂i = E(bi|Yi; β̂, Ĝ, σ̂2) = ĜZ ′iΣ̂
−1
i (Yi −Xiβ̂),

where Σi = Cov (Yi|Xi) = ZiGZ
′
i +Ri = ZiGZ

′
i + σ2I.

When the unknown covariance parameters have been replaced by their
ML or REML estimates, the resulting predictor is often referred to as the
“Empirical BLUP” or the “Empirical Bayes” (EB) estimator.

Finally, the ith subject’s predicted response profile is,

Ŷi = Xiβ̂ + Zib̂i
= Xiβ̂ + ZiĜZ

′
iΣ̂
−1
i (Yi −Xiβ̂)

= (R̂iΣ̂−1
i )Xiβ̂ + (I − R̂iΣ̂−1

i )Yi
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That is, the ith subject’s predicted response profile is a weighted
combination of the population-averaged mean response profile, Xiβ̂, and
the ith subject’s observed response profile Yi.

Subject’s predicted response profile is “shrunk” towards population-
averaged mean response profile.

Amount of “shrinkage” depends on relative magnitude of Ri and Σi.

Note that Ri characterizes the within-subject variability, while Σi
incorporates both within-subject and between-subject sources of variability.
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RiΣ−1
i =

within-subject variability
within-subject + between-subject variability

.

Thus, RiΣ−1
i denotes the fraction of total variability that is due to within-

subject (or measurement error) variation.

Similarly, (I − RiΣ−1
i ) denotes the fraction of total variability that is due

to between-subject variation.

When within-subject variability is large relative to between-subject
variability, more weight is given to Xiβ̂, the population-averaged mean
response profile (more “shrinkage”).
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PROC MIXED in SAS

The Empirical Bayes (EB) estimates, b̂i, can be obtained by using the
following option on the RANDOM statement in PROC MIXED:

RANDOM INTERCEPT time / TYPE=UN SUBJECT=id S;

Alternatively, a subject’s predicted response profile,

Ŷi = Xiβ̂ + Zib̂i,

can be obtained by using the following option on the MODEL statement:

MODEL y = trt time trt*time / OUTP=SAS-data-set;
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Example: Exercise Therapy Study

Consider a model with randomly varying intercepts and slopes, and which
allows the mean values of the intercept and slope to differ in the two
treatment groups.

To fit this model, use the following SAS code:

PROC MIXED DATA=stren;
CLASS id trt;
MODEL y=trt time time*trt / S CHISQ;
RANDOM INTERCEPT time / TYPE=UN SUBJECT=id G S;
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Empirical Bayes Estimates of bi

Solution for Random Effects

Std Err
Effect id Estimate Pred t Value Pr > |t|
Intercept 1 -1.0111 0.9621 -1.05 0.2959
time 1 -0.03812 0.08670 -0.37 0.7144
Intercept 2 3.3772 0.9621 1.07 0.0007
time 2 0.1604 0.08670 1.85 0.0672

. . . . . .

. . . . . .

. . . . . .
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Example: Exercise Therapy Study

Next, we consider how to obtain a subject’s predicted response profile.

PROC MIXED DATA=stren;
CLASS id trt;
MODEL y=trt time time*trt / S CHISQ OUTP=predict;
RANDOM INTERCEPT time / TYPE=UN SUBJECT=id G S;

PROC PRINT DATA=predict;
VAR id trt time y Pred StdErrPred Resid;
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Predicted Response Profiles

StdErr
id trt time y Pred Pred Resid

1 1 0 79 78.9937 0.59729 0.00634
1 1 4 79 79.4071 0.39785 -0.40707
1 1 6 80 79.6138 0.36807 0.38623
1 1 8 80 79.8205 0.40451 0.17952
1 1 12 80 80.2339 0.61057 -0.23389
2 1 0 83 83.3820 0.59729 -0.38202
2 1 4 85 84.5644 0.39785 0.43562
2 1 6 85 85.1556 0.36807 -0.15557
2 1 8 86 85.7468 0.40451 0.25325
2 1 12 87 86.9291 0.61057 0.07088
. . . . . . .
. . . . . . .
. . . . . . .
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Case Study: Influence of Menarche on Changes in

Body Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is almost “balanced” if timing of measurement is defined as
time since baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 27: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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Consider hypothesis that %body fat increases linearly with age, but with
different slopes before/after menarche.

We assume that each girl has a piecewise linear spline growth curve with a
knot at the time of menarche (see Figure 28).

Each girl’s growth curve can be described with an intercept and two slopes,
one slope for changes in response before menarche, another slope for changes
in response after menarche.

Note: the knot is not a fixed age for all subjects.

Let tij denote time of the jth measurement on ith subject before or after
menarche (i.e., tij = 0 at menarche).
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Figure 28: Graphical representation of piecewise linear trajectory.
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We consider the following linear mixed effects model

E(Yij|bi) = β1 + β2tij + β3(tij)+ + b1i + b2itij + b3i(tij)+,

where (tij)+ = tij if tij > 0 and (tij)+ = 0 if tij ≤ 0.

Interpretation of model parameters:

The intercept β1 is the average %body fat at menarche (when tij = 0).

The slope β2 is the average rate of change in %body fat (per year) during
the pre-menarcheal period.
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The average rate of change in %body fat (per year) during the post-
menarcheal period is given by (β2 + β3).

Goal: Assess whether population slopes differ before and after menarche,
i.e., H0 : β3 = 0.

Similarly, (β1 + b1i) is intercept for ith subject and is the true %body fat
at menarche (when tij = 0).

(β2 + b2i) is ith subject’s slope, or rate of change in %body fat during the
pre-menarcheal period.

Finally, the ith subject’s slope during the post-menarcheal period is given
by [(β2 + β3) + (b2i + b3i)].
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Interpretation of variance components:

Recall that the subject-specific intercepts, (β1 + b1i), have mean β1 and
variance g11 = σ2

b1i
.

Furthermore, since b1i ∼ N(0, σ2
b1i

) this implies that (β1+b1i) ∼ N(β1, σ
2
b1i

).

Under the assumption of normality, we expect 95% of the subject-specific
intercepts, (β1 + b1i), to lie between: β1 ± 1.96× σb1i.

Variance components for b2i and b3i can be interpreted in similar fashion.
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Table 39: Estimated regression coefficients (fixed effects) and standard
errors for the percent body fat data.

PARAMETER ESTIMATE SE Z

INTERCEPT 21.3614 0.5646 37.84

time 0.4171 0.1572 2.65

(time)+ 2.0471 0.2280 8.98
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Table 40: Estimated covariance of the random effects and standard errors
for the percent body fat data.

PARAMETER ESTIMATE SE Z

Var(b1i) 45.9413 5.7393 8.00
Var(b2i) 1.6311 0.4331 3.77
Var(b3i) 2.7497 0.9635 2.85
Cov(b1i, b2i) 2.5263 1.2185 2.07
Cov(b1i, b3i) -6.1096 1.8730 -3.26
Cov(b2i, b3i) -1.7505 0.5980 -2.93

Var(εi) = σ2 9.4732 0.5443 17.40
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Results

Estimated intercept, β̂1 = 21.36, has interpretation as the average percent
body fat at merarche (when tij = 0).

Of note, actual percent body fat at menarche is not observed.

The estimate of the population mean pre-menarcheal slope, β2, is 0.42,
which is statistically significant at the 0.05 level.

This estimated slope is rather shallow and indicates that the annual rate of
body fat accretion is less that 0.5%.
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The estimate of the population mean post-menarcheal slope, β2+β3, is 2.46
(with SE = 0.12), which is statistically significant at the 0.05 level.

This indicates that annual rate of body fat accretion is approximately 2.5%,
almost six times higher than in the pre-menarcheal period.

Based on magnitude of β̂3, relative to its standard error, slopes before and
after menarche differ (at the 0.05 level).

Thus, there is evidence that body fat accretion differs before and after
menarche.
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Estimated variance of b1i is 45.94, indicating substantial variability from
girl to girl in true percent body fat at menarche, β1 + b1i.

For example, approximately 95% of girls have true percent body fat between
8.08% and 34.65%

(
i.e., 21.36± 1.96×

√
45.94

)
.

Estimated variance of b2i is 1.6, indicating substantial variability from girl
to girl in rates of fat accretion during the pre-menarcheal period.

For example, approximately 95% of girls have changes in percent body fat
between -2.09% and 2.92%

(
i.e., 0.42± 1.96×

√
1.63

)
.
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Estimated variance of slopes during the post-menarcheal period, Var(b2i +
b3i), is 0.88 (or [1.63 + 2.75 −2 × 1.75]), indicating less variability in the
slopes after menarche.

For example, approximately 95% of girls have changes in percent body fat
between 0.62% and 4.30%

(
i.e., 2.46± 1.96×

√
0.88

)
.

Results indicate that more than 95% of girls are expected to have increases
in body fat during the post-menarcheal period.

Substantially fewer (approximately 63%) are expected to have increases in
body fat during the pre-menarcheal period.
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Finally, there is strong positive correlation (approximately 0.8) between
annual measurements of percent body fat.

The estimated marginal correlations among annual measurements of
percent body fat can be derived from the estimated variances and
covariances among the random effects in Table 40.

Strength of correlation declines over time, but does not decay to zero even
when measurements are taken 8 years apart (see Table 41).
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Table 41: Marginal correlations (off-diagonals) among repeated measures of
percent body fat between 4 years pre- and post-menarche, with estimated
variances along main diagonal.

-4 -3 -2 -1 0 1 2 3 4

61.3 0.82 0.78 0.71 0.61 0.60 0.57 0.52 0.47
0.82 54.9 0.81 0.76 0.70 0.68 0.64 0.60 0.54
0.78 0.81 51.8 0.80 0.76 0.74 0.71 0.66 0.60
0.71 0.76 0.80 52.0 0.81 0.79 0.76 0.71 0.64
0.61 0.70 0.76 0.81 55.4 0.81 0.78 0.73 0.66
0.60 0.68 0.74 0.79 0.81 49.1 0.79 0.76 0.70
0.57 0.64 0.71 0.76 0.78 0.79 44.6 0.77 0.74
0.52 0.60 0.66 0.71 0.73 0.76 0.77 41.8 0.76
0.47 0.54 0.60 0.64 0.66 0.70 0.74 0.76 40.8
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The mixed effects model can be used to obtain estimates of each girl’s
growth trajectory over time, based on the β̂’s and b̂i’s.

Figure 29 displays estimated population mean growth curve and predicted
(empirical BLUP) growth curves for two girls.

Note: two girls differ in the number of measurements obtained (6 and 10
respectively).

A noticeable feature of the predicted growth curves is that there is more
shrinkage towards the population mean curve when fewer data points are
available.

This becomes more apparent when BLUPs are compared to ordinary least
squares (OLS) estimates based only on data from each girl (see Figure 30).
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Figure 29: Population average curve and empirical BLUPs for two randomly
selected girls.
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Figure 30: Population average curve, empirical BLUPs, and OLS
predictions for two randomly selected girls.
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Summary of Key Points

Linear mixed effects models are increasingly used for the analysis of
longitudinal data.

Introduction of random effects accounts for the correlation among repeated
measures and allows for heterogeneity of the variance over time, but does
not change the model for E(Yij|Xij).

The inclusion of random slopes or random trajectories induces a random
effects covariance structure for Yi1, ..., Yini where the variances and
correlations are a function of the times of measurement.

In general, the random effects covariance structure is relatively
parsimonious (e.g., random intercepts and slopes model has only four
parameters, σ2

b1
, σ2
b2
, σb1,b2, and σ2).
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Linear mixed effects models are appealing because of

• their flexibility in accommodating a variety of study designs, data models
and hypotheses.

• their flexibility in accommodating any degree of imbalance in the data
(e.g., due to mistimed measurements and/or missing data)

• their ability to parsimoniously model the variance and correlation

• their ability to predict individual trajectories over time

Note 1: Tests of fixed effects rely on asymptotic normality of the fixed
effects (not Yij); need reasonable (say > 30) number of subjects.

Note 2: Missing observations can be accommodated easily, validity of results
depends upon assumption about missingness (see Lecture 14).
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Linear Mixed Models using PROC MIXED in SAS

Table 42: Illustrative commands for a linear mixed effects model, with
randomly varying intercepts and slopes, using PROC MIXED in SAS.

PROC MIXED;
CLASS id group;
MODEL y=group time group*time / SOLUTION CHISQ;
RANDOM INTERCEPT time / SUBJECT=id TYPE=UN G V;
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Table 43: Illustrative commands for obtaining the estimated BLUPs and
predicted responses from model with randomly varying intercepts and
slopes, using PROC MIXED in SAS.

PROC MIXED;
CLASS id group;
MODEL y=group time group*time / SOLUTION CHISQ OUTPRED=yhat;
RANDOM INTERCEPT time / SUBJECT=id TYPE=UN SOLUTION;

PROC PRINT;
VAR id group time y PRED;
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Missing Data and Dropout

In longitudinal studies missing data are the rule not the exception.

The term “missing data” is used to indicate that an intended measurement
could not be obtained.

With missing data there must necessarily be some loss of information.

Of greater concern, missing data can introduce bias and result in misleading
inferences about change over time.

When data are missing we must carefully consider the reasons for
missingness.
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Unequal ni per Subject or Unbalanced Designs

Basically, the methods that we have discussed so far can handle situations
in which ni 6= n for all i (i.e., unequal number of observations per subject).

That is, modern regression methods can handle unbalanced longitudinal
designs with relative ease.

However, we do need to be more careful when ni 6= n for all i due to
missingness.
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Missing Data
Why might we have ni 6= n for all i?

For most designed studies, we plan on measuring the same number of
outcomes, so if ni 6= n for all i, then some outcomes are missing.

Let Y denote the complete response vector which can be partitioned into
two sub-vectors:

(i) Y O the measurements observed
(ii) YM the measurements that are missing

If there were no missing data, we would have observed the complete response
vector Y .

Instead, we get to observe Y O.
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The main problem with missing data is that distribution of the observed
data may not be the same as distribution of the complete data.

Consider the following simple illustration:

Suppose we intend to measure subjects at 6 months (Y1) and 12 months
(Y2) post treatment.

All of the subjects return for measurement at 6 months, but many do not
return at 12 months.

If subjects fail to return at 12 months because they are not well (say, values
of Y2 are low), then distribution of observed Y2’s will be positively skewed
compared to distribution of Y2’s in the population of interest.
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When data are missing we must carefully consider the reasons for
missingness.

Estimation of β with missing data depends on the missing data mechanism.

The missing data mechanism is a probability model for missingness:

• Missing Completely at Random (MCAR)

• Missing at Random (MAR)

• Not Missing at Random (NMAR)
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Missing Completely at Random (MCAR)

MCAR: probability that responses are missing is unrelated to either the
specific values that, in principle, should have been obtained (the missing
responses) or the set of observed responses.

MCAR: probability responses are missing is independent of Y O and YM .

Missingness is simply the result of a chance mechanism that is unrelated to
either observed or unobserved components of the outcome vector.

Consequently, observed data can by thought of as a random sample of the
complete data.
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Covariate-Dependent Missingness

If missingness depends only on X, then technically it is MCAR. However,
sometimes this is referred to as covariate dependent non-response.

In general, if non-response depends on covariates, X, it is harmless and same
as MCAR provided you always condition on the covariates (i.e., incorporate
the covariate in the analysis).
This type of missingness is only a problem if you do not condition on X.

Example 1: Consider the case where missingness depends on treatment
group. Then the observed means in each treatment group are unbiased
estimates of the population means.

However, the marginal response mean, averaged over the treatment groups,
is not unbiased for the corresponding mean in the population (the latter,
though, is usually not of subject-matter interest).
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Sometimes it may be necessary to introduce additional covariates, or
stratifying variables, into the analysis to control for potential bias due to
missingness.

Example 2: Suppose the response Y is some measure of health, and X1 is
an indicator of treatment, and X2 is an indicator of side-effects. Suppose
missingness depends on side-effects.

If side-effects and outcome are uncorrelated, then there will be no bias.

If side-effects and outcome are correlated, then there will be bias unless
you stratify the analysis on both treatment and side-effects (analogous to
confounding).
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Features of MCAR

The means, variances, and covariances are preserved.

So, if
E (Yi)

n×1

= Xi
n×p

β with complete data

then
E (Yi)

ni×1

= Ii
ni×n

Xi
n×p

β = Xi
ni×p

β

Cov (Yi)
ni×ni

= Ii
ni×n

Σ I ′i = Σi

where Ii is identity matrix with rows corresponding to missing values
removed.
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MCAR:

• Can use ML/REML estimators for β

• More generally, we can use GLS estimator with any “working”
assumption for the covariance; normality assumption for Yij is not
necessary

• If we use GLS estimator with incorrect “working” assumption for the
covariance, then must use “empirical” or “sandwich” variance estimator
for Cov(β̂)
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Any method of analysis that yields valid inferences in absence of missing
data is also valid when missing data are MCAR and analysis is based on
all available data, or even when restricted to so-called “completers”.

Given that valid estimates of the means, variances, and covariances can
be obtained, GLS provides valid estimates of β without requiring any
distributional assumptions for Yi.

The GLS estimator of β is valid provided the model for the mean response
has been correctly specified; it does not require any assumptions about the
joint distribution of the longitudinal responses.

=⇒ With complete data or data MCAR, normality assumption is not
required.

446



Missing at Random (MAR)

MAR: probability that responses are missing depends on the set of observed
responses, but is unrelated to the specific missing values that, in principle,
should have been obtained.

MAR: probability that responses are missing depends on Y O, but is
conditionally independent of YM .

Note 1: If subjects are stratified on the basis of similar values for the
responses that have been observed, then within strata missingness is simply
the result of a chance mechanism unrelated to unobserved responses.
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Note 2: Because missingness depends on observed responses, the
distribution of Yi in each of the distinct strata defined by the patterns of
missingness is not the same as the distribution of Yi in the target population.

The “completers” are a biased sample from the target population.
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Features of MAR

Means, variances, and covariances are not preserved:

So, if
E (Yi)

n×1

= Xi
n×p

β with complete data

In general
E (Yi)

ni×1

6= Xi
ni×p

β, Cov(Yi) 6= Σi

This implies that sample means, variances, and covariances based on
either the “completers” or the available data are biased estimates of the
corresponding parameters in the target population.
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However, the likelihood is preserved.

For example, in the linear models for longitudinal data the appropriate
likelihood assumes

Yi ∼ N(Xiβ,Σi).

Because missingness only depends on observed data, likelihood factors into
one piece depending on (β,Σi), another depending on Yi and missingness
indicators.

Valid inferences for (β,Σi) are obtained by maximizing the first piece (and
“ignoring” the second piece) of the likelihood.

Note: Observed responses are not necessarily normally distributed.
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ML estimation (e.g., PROC MIXED) of β is valid when data are MAR
provided the multivariate normal distribution has been correctly specified.

This requires correct specification of not only the model for the mean
response, but also the model for the covariance among the responses.

In a sense, ML estimation allows the missing values to be validly “predicted”
or “imputed” using the observed data and a correct model for the joint
distribution of the responses.
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Not Missing at Random (NMAR)

NMAR: probability that responses are missing is related to the specific
values that should have been obtained.

An NMAR mechanism is often referred to as “non-ignorable” missingness.

Challenging problem and requires modelling of missing data mechanism;
moreover, specific model chosen can drive results of analysis.

Sensitivity analyses is recommended.
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Dropout

Longitudinal studies often suffer from problem of attrition; i.e., some
individuals “drop out” of the study prematurely.

This is where an individual is observed from baseline up until a certain
point in time, thereafter no more measurements are made.

Term dropout refers to special case where if Yik is missing, then Yik+1, ..., Yin
are also missing.

This gives rise to so-called “monotone” missing data pattern displayed in
Figure 31.
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Figure 31: Schematic representation of a monotone missing data pattern
for dropout, with Yj more observed than Yj+1 for j = 1, ..., n− 1.
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Possible reasons for dropout:

1. Recovery

2. Lack of improvement or failure

3. Undesirable side effects

4. External reasons unrelated to specific treatment or outcome

5. Death
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Examples

In clinical trials, monotone missing data can arise from a variety of
circumstances:

a) Late entrants: If the study has staggered entry, at any interim analysis
some individuals may have only partial response data.

Usually, this sort of missing data does not introduce any bias.

b) Dropout: Individuals may drop out of a clinical trial because of side
effects or lack of efficacy.

Usually, this type of missing data is of concern, especially if dropout
is due to lack of efficacy.
Dropout due to lack of efficacy suggests that those who drop out come
from the lower end of the spectrum.
Dropout due to side effects may or may not be a problem, depending
upon the relationship between side effects and the outcome of interest.

456



When there is dropout, key issue is whether those who “drop out” and
those who remain in the study differ in any further relevant way.

If they do differ, then there is potential for bias.

The taxonomy of missing data mechanisms (MCAR, MAR, and NMAR)
discussed earlier can be applied to dropout.
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Common Approaches for Handling Dropout

Complete-Case Analysis:

Exclude all data from the analysis on any subject who drops out.

That is, a so-called “complete-case” analysis can be performed by excluding
any subjects that do not have data at all intended measurement occasions.

This method is very problematic and is rarely an acceptable approach to
the analysis.

It will yield unbiased estimates of mean response trends only when dropout
is MCAR.

Even when MCAR assumption is tenable, complete-case analysis can be
immensely inefficient.

458



Available-Data Analysis:

General term that refers to a wide collection of techniques that can readily
incorporate vectors of repeated measures of unequal length in the analysis.

Standard applications of GLS are available-data methods.

In general, available-data methods are more efficient than complete-case
methods.

Drawbacks of available-data methods:

(i) Sample base of cases changes over measurement occasions.
(ii) Pairwise available-data estimates of correlations can lie outside (-1, 1).
(iii) Many available-data methods yield biased estimates of mean response

trends unless dropout is MCAR.
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Imputation

Imputation: substitute or fill-in the values that were not recorded with
imputed values.

Once a filled-in data set has been constructed, standard methods for
complete data can be applied.

Validity of method depends on how imputation is done.

Methods that rely on just a single imputation fail to acknowledge the
uncertainty inherent in the imputation of the unobserved responses.

“Multiple imputation” circumvents this difficulty.
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Multiple Imputation (MI): Missing values are replaced by a set of m
plausible values, thereby acknowledging uncertainty about what values to
impute.

Typically, a small number of imputations, for instance, 5 ≤ m ≤ 10, is
sufficient.

The m filled-in data sets produce m different sets of parameter estimates
and their standard errors.

These are then combined to provide a single estimate of the parameters of
interest, together with standard errors that reflect the uncertainty inherent
in the imputation.
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“Last Value Carried Forward” (LVCF):

One widely used imputation method, especially in clinical trials, is LVCF.

Regulatory agencies such as FDA seem to encourage the continuing use of
LVCF.

LVCF makes a strong, and often very unrealistic, assumption that the
responses following dropout remain constant at the last observed value prior
to dropout.

There appears to be some statistical folklore that LVCF yields a conservative
estimate of the comparison of an active treatment versus the control.

This is a gross misconception!

Except in very rare cases, we do not recommend the use of LVCF as a
method for handling dropout.
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Variations on the LVCF theme include baseline value carried forward and
worst value carried forward.

Imputation methods based on drawing values of missing responses from
the conditional distribution of the missing responses given the observed
responses have a much firmer theoretical foundation.

Then subsequent analyses of the observed and imputed data are valid when
dropouts are MAR (or MCAR).

Furthermore, multiple imputation ensures that the uncertainty is properly
accounted for.
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Model-Based Imputation:

There is a related form of “imputation” where missing responses are
implicitly imputed by modelling joint distribution of Yi, f(Yi|Xi).

When dropout is MCAR or MAR, likelihood-based methods can be used
based solely on the marginal distribution of the observed data.

In a certain sense, the missing values are validly predicted by the observed
data via the model for the conditional mean of the missing responses given
the observed responses (and covariates).

However, likelihood-based approaches require model for f(Yi|Xi) must be
correctly specified (e.g., any misspecification of the covariance will, in
general, yield biased estimates of the mean response trend).
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Weighting Methods

In weighting methods, under-representation of certain response profiles in
the observed data is taken into account and corrected.

These approaches are often called “propensity weighted” or “inverse
probability weighted” methods.

Basic Idea: Base estimation on the observed responses but weight them to
account for the probability of remaining in the study.

Intuition: Each subject’s contribution to the weighted analysis is replicated
to count for herself and for those subjects with the same history of responses
and covariates, but who dropout.
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Propensities for dropout can be estimated as a function of observed
responses prior to dropout and covariates.

Inverse probability weighted methods were first proposed in sample survey
literature, where the weights are known.

In contrast, with dropout the weights are not known, but must be estimated
from the observed data.

In general, weighting methods are valid provided model that produces the
estimated weights is correctly specified.
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Summary

In longitudinal studies missing data are the rule not the exception.

Missing data have two important implications:
(i) loss of information, and
(ii) validity of analysis.

The loss of information is directly related to the amount of missing data;
it will lead to reduced precision (e.g., larger SEs, wider CIs) and reduced
statistical power (e.g., larger p-values).

The validity of the analysis depends on assumptions about the missing data
mechanism.
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Likelihood-based methods (e.g., PROC MIXED) are valid under MAR or
MCAR.

The distinction between MAR and MCAR determines the appropriateness
of ML estimation under the assumption of normality versus GLS estimation
without requiring distributional assumptions.

With complete data or data MCAR, normality assumption is not required.

With data MAR, normality assumption is required and correct models for
both the mean response and the covariance.
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Aspects of Design of Longitudinal Studies

In this lecture, we consider two issues concerning the design of longitudinal
studies:

(1) Sample size and Power

(2) Longitudinal and Cross-Sectional Information

The first issue has important implications for planning a longitudinal study,
the second has implications for analysis.
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Sample Size and Power
Investigators typically need to know the answer to the following question:
“How large should my study be?”

Answer is straightforward with only a single, univariate response: the size
of a study = sample size.

For a longitudinal study the question of size is more complex,
e.g., number of subjects, duration of study, frequency and spacing of
repeated measurements on the subjects.

Before discussing sample size/power in context of longitudinal studies, we
review sample size/power formulas for a univariate response.

We then describe a simple, albeit approximate, method that allows direct
application of these formulas in longitudinal setting.
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Sample Size for a Univariate Response

Interested in comparing two treatments (or exposures), denoted A and B.

Plan to randomize an equal number of subjects, say N , to two groups.

Two groups are to be compared in terms of the mean response.

Let µ(A) and µ(B) denote the mean response in the two populations.

Define effect of interest as δ = µ(A) − µ(B).

The null hypothesis of no group difference is H0: δ = 0.
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Type I and Type II Errors

Recall: Two types of errors can arise when testing H0: δ = 0.

Type I error: If we reject the null hypothesis when in fact it is true.

Thus, for our example where H0: δ = 0,

α = Pr(Reject H0 | H0 is true).

The probability of type I error, also known as the significance level, is
usually denoted by α.

Conventionally, α is chosen to be no greater than 0.05.
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Type II error: If we fail to reject the null hypothesis when in fact it is false.

We denote probability of a type II error by γ, with

γ = Pr(Fail to reject H0 | H0 is false).

Note: γ necessarily depends upon the particular choice of value for δ 6= 0
under the alternative hypothesis.

Finally, power of test is defined as 1− γ, that is,

power = 1− γ = Pr(Reject H0 | H0 is false).

474



Two-Group Sample Size Formula

For two group comparison, a formula for approximate sample size in each
group, N , is

N =
{Z(1−α/2) + Z(1−γ)}2 2σ2

δ2
, where

σ2 is variance of response (assumed to be common in two groups), and
Z(1−α/2) and Z(1−γ) denote the (1 − α/2) × 100% and (1 − γ) × 100%
percentiles of a standard normal distribution (e.g., the 97.5th percentile of
a standard normal distribution is 1.96).

Note: N denotes sample size in each group; total sample size is 2N .
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Closer examination of formula reveals that the determination of sample size
requires

(i) significance level, α;
(ii) power, 1− γ;
(iii) effect size, δ; and
(iv) common variance, σ2.

Conventionally, α is fixed at mythical 0.05 level (with Z(1−α/2) = 1.96 for
a 2-tailed test).

Similarly, lower bound on acceptable power is usually set at approx. 80%
(with Z(1−γ) = 0.842 for power = 0.8, or Z(1−γ) = 1.282 for power = 0.9).

Investigators must provide information on: minimum effect size of scientific
interest, δ, and an estimate of σ2.
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Sample Size for Longitudinal Response

Interested in comparing two treatments (or exposures), denoted A and B.

Plan to randomize an equal number of subjects, say N , to two groups.

Plan to take n repeated measurements of the response (not necessarily
equally spaced measurements).

Two groups to be compared in terms of changes in the mean response over
duration of study.

For simplicity, we assume linear trends and define effect of interest as
difference in slopes or rates of change, say δ.
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Under null hypothesis of no group difference, i.e., no group × linear trend
interaction, H0: δ = 0.

Sample size calculation can be simplified so that earlier formula can be used.

This is achieved by considering two-stage model described in Lecture 12.

Stage 1: assume a simple parametric curve (e.g., linear) fits the observed
responses for each subject.

Stage 2: individual-specific parameters are then related to covariates that
describe the two groups.
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Stage 1:
Yij = β1i + β2i tj + εij,

where the errors, εij, are assumed to be independent and εij ∼ N(0, σ2
ε ).

Stage 2:

Let βi = (β1i, β2i)′.

Allow the mean of βi (i.e., the mean intercept and slope) to depend on
group,

E(β1i) = β1 + β2 Groupi

E(β2i) = β3 + β4 Groupi.

Note: β4 is the group difference in the mean slope; δ = β4.
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The between-individual variation in the βi that cannot be explained by
group is

Cov(βi) = G =

 g11 g12

g21 g22

 ,

where g11 = Var(β1i), g22 = Var(β2i), and g12 = g21 = Cov(β1i, β2i).
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Recall: Each subject is measured at common set of occasions, t1, ..., tn.

Let β̂2i denote the ordinary least squares (OLS) estimate of the slope for
the ith subject.

Variability of β̂2i, say σ2, is given by

σ2 = Var(β̂2i) = σ2
ε


n∑
j=1

(tj − t)2


−1

+ g22,

where

t =
1
n

n∑
j=1

tj.
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To test if mean slopes are equal in two groups, we can construct the
following z-test based on the β̂2i:

Z =
β

(A)

2 − β(B)

2

σ
√

1
N + 1

N

=
β

(A)

2 − β(B)

2

σ
√

2
N

,

where β
(A)

2 and β
(B)

2 are the sample averages of β̂2i in groups A and B,
respectively, and σ2 = Var(β̂2i).

Given estimates of g22, the between-subject variability in slopes, and σ2
ε ,

the within-subject variability, the sample size can be determined from

N =
{Z(1−α/2) + Z(1−γ)}2 2σ2

δ2
,
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where now

σ2 = σ2
ε


n∑
j=1

(tj − t)2


−1

+ g22,

and δ is group difference in slopes.

Note: This sample size formula is virtually identical to previous formula
except σ2 has two components:
a within-subject variance component, σ2

ε{
∑n
j=1(tj − t)2}−1, and

a between-subject variance component, g22 = Var(β2i).

Finally, in a study of length τ , if the n repeated measurements are taken
at equally-spaced times t1 = 0, t2 = τ/(n− 1), t3 = 2τ/(n− 1), ..., tn = τ ,

n∑
j=1

(tj − t)2 =
τ2 n (n+ 1)
12 (n− 1)

.
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Further examination of this simple formula reveals how sample size (and
power) is impacted by:

(i) the length of the study;

(ii) the number of repeated measures; and

(iii) the spacing of the repeated measures.

Note: In general, investigators have little control over the natural
heterogeneity of the study population, g22 = Var(β2i).

Magnitude of σ2 can be reduced by increasing magnitude of

n∑
j=1

(tj − t)2.

For example, increase length of study or number of repeated measures.
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Example

Interested in comparing two treatments (or exposures), denoted A and B.

Plan to randomize an equal number of subjects, say N , to two group.

Plan to take n = 5 repeated measurements of the response; 1 at month 0,
remainder at 6-month intervals (τ = 2 years).

For simplicity, we assume linear trends and define effect of interest as
difference in slopes or rates of change, say δ.

Suppose investigators want to detect minimum δ = 1.2 (e.g., difference in
the annual rates of change in the two groups of no less than 1.2).
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Based on historical data, investigators posit that between-subject variability
in the rate of change, Var(β2i) ≈ 2 and the within-subject variability,
σ2
ε ≈ 7.

Finally, investigators desire to have power of 90% when conducting a 2-
sided test at the 5% significance level (i.e., γ = 0.1 and α = 0.05).

Given these specifications,

σ2
ε


n∑
j=1

(tj − t)2


−1

=
12 (n− 1)σ2

ε

τ2 n (n+ 1)
=

12× 4× 7
4× 5× 6

= 2.8,

and

σ2 = σ2
ε


n∑
j=1

(tj − t)2


−1

+ g22 = 2.8 + 2.0 = 4.8.
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The projected N in each group is

N =
{Z(1−α/2) + Z(1−γ)}2 2σ2

δ2
=

(1.96 + 1.282)2 × 2× 4.8
1.44

= 70.1.

Thus, to ensure power of at least 90% investigators will need to enroll a
total of 142 subjects, randomizing an equal number (71) to each group.

Note study of same duration (τ = 2 years) with n = 3 repeated
measurements, 12 months apart, would require a total of 162 subjects to
achieve comparable power.

Alternatively, study over 3 instead of 2 years (and with same retention rate),
with n = 5 repeated measurements taken 9 months apart, would require a
total of 96 subjects to achieve power of at least 90%.

Table 44 displays power as a function of N and n.
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Table 44: Power as a function of sample size and the number of equally
spaced repeated measurements in a longitudinal study of fixed duration.

Number of Repeated Measures (n)

Sample Size (N) 2 4 6 8 10

20 0.37 0.39 0.43 0.47 0.50

40 0.63 0.66 0.72 0.76 0.79

60 0.80 0.83 0.87 0.90 0.93

80 0.90 0.92 0.95 0.97 0.98

100 0.95 0.96 0.98 0.99 0.99

Power when conducting a 2-sided test at the 5% significance level (α = 0.05) when τ = 2,

δ = 1.2,Var(β2i) = 2, and σ2
e = 7.
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Longitudinal and Cross-Sectional Information

In certain longitudinal designs, we have cohorts that differ in age measured
repeatedly over time.

In such designs, it is possible to estimate the effect of growth or aging from
two different sources of information: longitudinal and cross-sectional.

It is possible for these two sources of information to provide conflicting
estimates of effects.

For example, when effect of aging is determined from cross-sectional
information, it is potentially confounded by cohort effects.

Therefore, important to consider models that allow for separate parameters
for the longitudinal and cross-sectional effects.
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In slight departure from notation, let tij denote age of ith subject at jth

occasion.

In another departure from notation, let Xij denote vector of time-varying
covariates and Zi denote vector of time-stationary covariates.

The following linear model simultaneously models cross-sectional and
longitudinal effects:

Yij = Z ′iβ0 +X ′i1β
(C) + (X ′ij −X ′i1)β(L) + eij.

This representation allows both cross-sectional effects, β(C), and
longitudinal effects, β(L), to be modelled simultaneously.

Interpretation of β(C) and β(L) becomes more transparent when implied
models for initial response and subsequent within-subject changes are
considered.

490



First, consider the model for the initial response, Yi1,

Yi1 = Z ′iβ0 +X ′i1β
(C) + ei1,

since (X ′i1 −X ′i1) = 0.

β(C) represents a vector of regression parameters for cross-sectional effects.

Next, consider the model for within-subject changes from the initial
response, Yij − Yi1,

(Yij − Yi1) = Z ′iβ0 +X ′i1β
(C) + (X ′ij −X ′i1)β(L) + eij

− (Z ′iβ0 +X ′i1β
(C) + ei1)

= (X ′ij −X ′i1)β(L) + (eij − ei1).

β(L) represents a vector of regression parameters for longitudinal effects.
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Simple Example

Yij = β0 + β1Genderi + β(C)Agei1 + β(L)(Ageij −Agei1) + eij.

First, consider the model for the initial response, Yi1,

Yi1 = β0 + β1Genderi + β(C)Agei1 + ei1,

β(C) describes how mean response at baseline changes with age at baseline
(cross-sectional change).

Next, consider the model for within-subject changes from the initial
response, Yij − Yi1,

(Yij − Yi1) = β(L)(Ageij −Agei1) + (eij − ei1).

β(L) describes how within-subject changes in the response are related to
within-subject changes in age (longitudinal change).
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Formal comparisons can be made by testing H0: β(C) = β(L).

Note: When β(C) = β(L) = β, the model simplifies to

Yij = Z ′iβ0 +X ′ijβ + eij.

In the simple example:

Yij = β0 + β1Genderi + β(C)Agei1 + β(L)(Ageij −Agei1) + eij,

the model simplifies to

Yij = β0 + β1Genderi + βAgeij + eij.
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However, when β(C) 6= β(L) but the model does not allow separate
estimation of cross-sectional and longitudinal effects,

Yij = Z ′iβ0 +X ′ijβ + eij,

then β is some weighted combination of β(C) and β(L) and may not reflect
effects of interest.

β confounds the longitudinal effects with the cross-sectional.
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Illustration

Suppose three age-cohorts of children, initially aged 5, 6, and 7 years, are
measured at baseline and followed annually for three years.

Suppose cross-sectional effect of age on the baseline response is linear, with

E(Yi1) = β(C)Agei1,

(for simplicity, model with intercept=0 is assumed).

Mean response increases linearly with changes in age in each cohort

E(Yij − Yi1) = β(L)(Ageij −Agei1),

but with slope β(L) 6= β(C).
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Figure 32 gives graphical representation of model for mean response versus
age, when β(C) = 0.75 and β(L) = 0.25.

Note the discernible difference between longitudinal (solid line) and cross-
sectional (dotted line) effects of aging.

When these differences are ignored, changes in the mean response (averaged
over the three age-cohorts) with age of measurement (dashed line) reflect a
combination of β(C) and β(L).
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Figure 32: Longitudinal, cross-sectional, and cohort-averaged regression lines for the
three age-cohorts: 4 denotes mean response of children initially aged 5 years;© denotes
mean response of children initially aged 6 years; and ∇ denotes mean response of children
initially aged 7 years. (• denotes averages over cohorts).
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Generalized Linear Models for Longitudinal Data

When the response variable is categorical (e.g., binary and count data),
generalized linear models (e.g., logistic regression) can be extended to
handle the correlated outcomes.

However, non-linear transformations of the mean response (e.g., logit) raise
additional issues concerning the interpretation of the regression coefficients.

Different approaches for accounting for the correlation lead to models
having regression coefficients with distinct interpretations.

In this course we will consider two main extensions of generalized linear
models: Marginal Models and Mixed Effects Models.
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Motivating Example

Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toe-nail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.
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Motivating Example

Clinical trial of anti-epileptic drug progabide
(Thall and Vail, Biometrics, 1990)

Randomized, placebo-controlled study of treatment of epileptic seizures
with progabide.

Patients were randomized to treatment with progabide, or to placebo in
addition to standard therapy.

Outcome variable: Count of number of seizures

Measurement schedule: Baseline measurement during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Sample size: 28 epileptics on placebo; 31 epileptics on progabide
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Generalized Linear Models

Generalized linear models are a class of regression models; they include the
standard linear regression model but also many other important models:

- Linear regression for continuous data
- Logistic regression for binary data
- Loglinear/Poisson regression models for count data

Generalized linear models extend the methods of regression analysis to
settings where the outcome variable can be categorical.

In the remainder of the course, we consider extensions of generalized linear
models to longitudinal data.

First, we review logistic and Poisson regression models for a single response.
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Review: Logistic Regression

So far, we have considered linear regression models for a continuous
response, Y , of the following form

Y = β1X1 + β2X2 + . . .+ βpXp + e

The response variable, Y , is assumed to have a normal distribution with
mean

E(Y ) = β1X1 + β2X2 + . . .+ βpXp

and with variance, σ2.
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Recall that the population intercept (for X1 = 1), β1, has interpretation as
the mean value of the response when all of the covariates take on the value
zero.

The population slope, say βk, has interpretation in terms of the expected
change in the mean response for a single-unit change in Xk given that all
of the other covariates remain constant.

In many studies, however, we are interested in a response variable that is
dichotomous/binary rather than continuous.

Next, we consider a regression model for a binary (or dichotomous)
response.
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Let Y be a binary response, where

Y = 1 represents a “success”;

Y = 0 represent a “failure”.

Then the mean of the binary response variable, denoted π, is the proportion
of successes or the probability that the response takes on the value 1.

That is,
π = E(Y ) = Pr(Y = 1) = Pr(“success”)

With a binary response, we are usually interested in estimating the
probability π, and relating it to a set of covariates.

To do this, we can use logistic regression.
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A naive strategy for modeling a binary response is to consider a linear
regression model

π = E(Y ) = β1X1 + β2X2 + . . .+ βpXp

However, in general, this model is not feasible since π is a probability and
is restricted to values between 0 and 1.

Also, the usual assumption of homogeneity of variance would be violated
since the variance of a binary response depends on the mean, i.e.

Var(Y ) = π (1− π)
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Instead, we can consider a logistic regression model where

ln [π/ (1− π)] = β1X1 + β2X2 + . . .+ βpXp

This model accommodates the constraint that π is restricted to values
between 0 and 1.

Recall that π/ (1− π) is defined as the odds of success.

Therefore, modeling π with a logistic function can be considered equivalent
to a linear regression model where the mean of the continuous response has
been replaced by the logarithm of the odds of success.

Note that the relationship between π and the covariates is non-linear.
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Figure 33: Plot of logistic response function.
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Under the assumption that the binary responses are Bernoulli random
variables, we can use ML estimation to obtain estimates of the logistic
regression parameters.

Finally, recall the relationship between “odds” and “probabilities”.

Odds =
π

1− π
;

π =
Odds

1 + Odds
.
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Given the logistic regression model

ln [π/ (1− π)] = β1X1 + β2X2 + . . .+ βpXp

the population intercept, β1, has interpretation as the log odds of success
when all of the covariates take on the value zero.

The population slope, say βk, has interpretation in terms of the change in
log odds of success for a single-unit change in Xk given that all of the other
covariates remain constant.

When one of the covariates is dichotomous, say X2, then β2 has a special
interpretation:

exp (β2) is the odds ratio or ratio of odds of success for the two possible
levels of X2 (given that all of the other covariates remain constant).
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Keep in mind that as:

π increases

⇒ odds of success increases

⇒ log odds of success increases

Similarly, as:

π decreases

⇒ odds of success decreases

⇒ log odds of success decreases
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Example: Development of bronchopulmonary dysplasia (BPD) in a sample
of 223 low birth weight infants.

Binary Response: Y = 1 if BPD is present, Y = 0 otherwise.

Covariate: Birth weight of infant in grams.

Consider the following logistic regression model

ln [π/ (1− π)] = β1 + β2Weight

where π = E(Y ) = Pr(Y = 1) = Pr(BPD)
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For the 223 infants in the sample, the estimated logistic regression (obtained
using ML) is

ln [π̂/ (1− π̂)] = 4.0343− 0.0042 Weight

The ML estimate of β2 implies that, for every 1 gram increase in birth
weight, the log odds of BPD decreases by 0.0042.

For example, the odds of BPD for an infant weighing 1200 grams is

exp (4.0343− 1200 ∗ .0042) = exp (−1.0057)

= 0.3658

Thus the predicted probability of BPD is:

0.3658/ (1 + 0.3658) = 0.268
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Figure 34: Plot of estimated logistic response function of BPD on birth
weight.
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Review: Poisson Regression

In Poisson regression, the response variable is a count (e.g. number of cases
of a disease in a given period of time).

The Poisson distribution provides the basis of likelihood-based inference.

Often the counts may be expressed as rates.

That is, the count or absolute number of events is often not satisfactory
because any comparison depends almost entirely on the sizes of the groups
(or the “time at risk”) that generated the observations.
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Like a proportion or probability, a rate provides a basis for direct
comparison.

In either case, Poisson regression relates the expected counts or rates to a
set of covariates.

The Poisson regression model has two components:

1. The response variable is a count and is assumed to have a Poisson
distribution.
That is, the probability a specific number of events, y, occurs is

Pr(y events) = e−λλy/y!

Note that λ is the expected count or number of events and the expected
rate is given by λ/t, where t is a relevant baseline measure (e.g., t might
be the number of persons or the number of person-years of observation).
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2. ln(λ/t) = β1X1 + β2X2 + . . .+ βpXp

Note that since ln(λ/t) = ln(λ)− ln(t), the Poisson regression model can
also be considered as

ln(λ) = ln(t) + β1X1 + β2X2 + . . .+ βpXp

where the ‘coefficient’ associated with ln(t) is fixed to be 1.

This adjustment term is known as an “offset”.

517



Therefore, modelling λ (or λ/t) with a log function can be considered
equivalent to a linear regression model where the mean of the continuous
response has been replaced by the logarithm of the expected count (or rate).

Note that the relationship between λ (or λ/t) and the covariates is non-
linear.

We can use ML estimation to obtain estimates of the Poisson regression
parameters, under the assumption that the responses are Poisson random
variables.
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Given the Poisson regression model

ln(λ/t) = β1X1 + β2X2 + . . .+ βpXp

the population intercept, β1, has interpretation as the log expected rate
when all the covariates take on the value zero.

The population slope, say βk, has interpretation in terms of the change in
log expected rate for a single-unit change in Xk given that all of the other
covariates remain constant.

When one of the covariates is dichotomous, say X2, then β2 has a special
interpretation:

exp (β2) is the (incidence) rate ratio for the two possible levels of X2 (given
that all of the other covariates remain constant).
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Example: Prospective study of coronary heart disease (CHD).

The study observed 3154 men aged 40-50 for an average of 8 years and
recorded incidence of cases of CHD.

The risk factors considered include:

Smoking exposure: 0, 10, 20, 30 cigs per day;
Blood Pressure: 0 (< 140), 1 (≥ 140);
Behavior Type: 0 (type B), 1 (type A).

A simple Poisson regression model is:

ln (λ/t) = ln(rate of CHD) = β1 + β2 Smoke

or
ln (λ) = ln(t) + β1 + β2 Smoke
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Person - Blood
Years Smoking Pressure Behavior CHD

5268.2 0 0 0 20
2542.0 10 0 0 16
1140.7 20 0 0 13
614.6 30 0 0 3

4451.1 0 0 1 41
2243.5 10 0 1 24
1153.6 20 0 1 27
925.0 30 0 1 17

1366.8 0 1 0 8
497.0 10 1 0 9
238.1 20 1 0 3
146.3 30 1 0 7

1251.9 0 1 1 29
640.0 10 1 1 21
374.5 20 1 1 7
338.2 30 1 1 12
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In this model the ML estimate of β2 is 0.0318. That is, the rate of CHD
increases by a factor of exp(0.0318) = 1.032 for every cigarette smoked.

Alternatively, the rate of CHD in smokers of one pack per day (20 cigs)
is estimated to be (1.032)20 = 1.88 times higher than the rate of CHD in
non-smokers.

We can include the additional risk factors in the following model:

ln (λ/t) = β1 + β2 Smoke + β3 Type + β4BP

Effect Estimate Std. Error

Intercept -5.420 0.130
Smoke 0.027 0.006
Type 0.753 0.136
BP 0.753 0.129
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Now, adjusted rate of CHD (controlling for BP and behavior type) increases
by a factor of exp(0.027) = 1.028 for every cigarette smoked.

Adjusted rate of CHD in smokers of one pack per day (20 cigs) is estimated
to be (1.027)20 = 1.7 times higher than rate of CHD in non-smokers.

Finally, note that when a Poisson regression model is applied to data
consisting of very small rates (say, λ/t << 0.01), then the rate is
approximately equal to the corresponding probability, p, and

ln (rate) ≈ ln (p) ≈ ln [p/ (1− p)]

Therefore, the parameters for Poisson regression and logistic regression
models are approximately equal when the event being studied is rare.

In that case, results from a Poisson and logistic regression will not give
discernibly different results.
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Overdispersion

Count data (or counts of number of successes) often have variability that
far exceeds that predicted by Poisson (or binomial) distribution.

This phenomenon is referred to as overdispersion.

Although underdispersion can also arise, it is far less common.

Failure to account for overdispersion has negligible impact of the estimated
regression coefficients.

Neglecting overdispersion results in standard errors being underestimated
and potentially misleading inferences (e.g., confidence intervals that are too
narrow and p-values that are too small).
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Example: Clinical Trial of Antibiotics for Leprosy

Placebo-controlled clinical trial of 30 patients with leprosy at the Eversley
Childs Sanitorium in the Philippines.

Participants were randomized to either of two antibiotics (denoted
treatment drug A and B) or to a placebo (denoted treatment drug C).

Baseline data on number of leprosy bacilli at 6 sites of body were recorded.

After several months of treatment, number of bacilli were recorded a second
time.

Outcome: Total count of number of leprosy bacilli at 6 sites.
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Table 45: Mean count of leprosy bacilli at six sites of the body (and
variance) post-treatment.

Treatment Group Post-Treatment

Drug A (Antibiotic) 5.3

(21.6)

Drug B (Antibiotic) 6.1

(37.9)

Drug C (Placebo) 12.3

(51.1)
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Consider outcome (post-treatment) at end of study.

Variability is approximately 4 to 6 times larger than that predicted by
Poisson variation.

Adjustments to nominal standard errors to account for overdispersion can
be made either by including a scale factor φ in specification of the Poisson
variance,

Var(Yi) = φµi,

or by basing standard errors on the so-called “sandwich” estimator of
Cov(β̂).
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Introduction to Generalized Linear Models

Generalized linear models are a class of regression models; they include the
standard linear regression model but also many other important models:

- Linear regression for continuous data
- Logistic regression for binary data
- Loglinear/Poisson regression models for count data

Generalized linear models extend the methods of regression analysis to
settings where the outcome variable can be categorical.

Later, we consider extensions of generalized linear models to longitudinal
data.
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Notation for Generalized Linear Models

Assume N independent observations of a single response variable, Yi.

Associated with each response, Yi, there is a p × 1 vector of covariates,
Xi1, ..., Xip.

Goal: Primarily interested in relating the mean of Yi,
µi = E(Yi|Xi1, ..., Xip), to the covariates.
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In generalized linear models:

(i) the distribution of the response is assumed to belong to a family of
distributions known as the exponential family, e.g., normal, Bernoulli,
binomial, and Poisson distributions.

(ii) A transformation of the mean response, µi, is then linearly related to
the covariates, via an appropriate link function:

g(µi) = β1Xi1 + β2Xi2 + · · ·+ βpXip,

where link function g(·) is a known function, e.g., log(µi).
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Mean and Variance of Exponential Family
Distributions

Exponential family distributions share some common statistical properties.

The variance of Yi can be expressed in terms of

Var (Yi) = φ v(µi),

where the scale parameter φ > 0.

The variance function, v(µi), describes how the variance of the response is
functionally related to µi, the mean of Yi.
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Link Function

The link function applies a transformation to the mean and then links the
covariates to the transformed mean,

g(µi) = β1Xi1 + β2Xi2 + · · ·+ βpXip,

where link function g(·) is known function, e.g., log(µi).

This implies that it is the transformed mean response that changes linearly
with changes in the values of the covariates.
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Canonical link and variance functions for the normal, Bernoulli, and Poisson
distributions.

Distribution Var. Function, v(µ) Canonical Link

Normal v(µ) = 1 Identity: µ = η

Bernoulli v(µ) = µ(1− µ) Logit: log
[

µ
(1−µ)

]
= η

Poisson v(µ) = µ Log: log(µ) = η

where η = β1X1 + β2X2 + · · ·+ βpXp.
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Common Examples

Normal distribution:

If we assume that g(·) is the identity function,

g (µ) = µ

then
µi = β1Xi1 + β2Xi2 + · · ·+ βpXip,

gives the standard linear regression model, with Var (Yi) = φ.

Note: Variance is unrelated to the mean.
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Bernoulli distribution:

For the Bernoulli distribution, 0 < µi < 1, so we would prefer a link function
that transforms the interval [0, 1] on to the entire real line (−∞,∞):

logit : ln [µi/ (1− µi)]
probit : Φ−1 (µi)

where Φ(·) is the standard normal cumulative distribution function.

If we assume a logit link function then

log
[

µi
(1− µi)

]
= β1Xi1 + β2Xi2 + · · ·+ βpXip,

yields logistic regression model, with Var (Yi) = µi(1 − µi) (Bernoulli
variance).
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Poisson distribution:

For the Poisson distribution, µi > 0, so we would prefer a link function that
transforms the interval (0,∞) on to the entire real line (−∞,∞).

If we assume a log link function then

log (µi) = β1Xi1 + β2Xi2 + · · ·+ βpXip,

yields Poisson or loglinear regression model, with Var (Yi) = µi (Poisson
variance).
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Summary

In generalized linear models:

(i) response assumed to have exponential family distribution, e.g., normal,
Bernoulli, binomial, and Poisson distributions.

(ii) transformed mean response is linearly related to the covariates, via an
appropriate link function:

g(µi) = β1Xi1 + β2Xi2 + · · ·+ βpXip.
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PROC GENMOD in SAS

Table 46: Illustrative commands for logistic regression using PROC
GENMOD in SAS.

PROC GENMOD DESCENDING;

CLASS group;

MODEL y=group / DIST=BINOMIAL LINK=LOGIT;
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PROC GENMOD in SAS

Table 47: Illustrative commands for log-linear regression, with an offset,
using PROC GENMOD in SAS.

PROC GENMOD;

CLASS group;

MODEL y=group / DIST=POISSON LINK=LOG OFFSET=logtime;
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Extensions of Generalized Linear Models to
Longitudinal Data

When the response variable is categorical (e.g., binary and count data),
generalized linear models (e.g., logistic regression) can be extended to
handle the correlated outcomes.

However, non-linear transformations of the mean response (e.g., logit) raise
additional issues concerning the interpretation of the regression coefficients.

As we will see, different models for discrete longitudinal data have somewhat
different targets of inference.
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Motivating Example

Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toe-nail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.
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Motivating Example

Clinical trial of anti-epileptic drug progabide
(Thall and Vail, Biometrics, 1990)

Randomized, placebo-controlled study of treatment of epileptic seizures
with progabide.

Patients were randomized to treatment with progabide, or to placebo in
addition to standard therapy.

Outcome variable: Count of number of seizures

Measurement schedule: Baseline measurement during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Sample size: 28 epileptics on placebo; 31 epileptics on progabide
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Generalized Linear Models for Longitudinal Data

Next, we focus on a number of distinct approaches for analyzing longitudinal
responses.

These approaches can be considered extensions of generalized linear models
to correlated data.

The main emphasis will be on discrete response data, e.g., count data or
binary responses.

Note: In linear (mixed effects) models for continuous responses, the
interpretation of the regression coefficients is independent of the correlation
among the responses.
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With discrete response data, this is no longer the case.

With non-linear models for discrete data, different approaches for
accounting for the correlation leads to models having regression coefficients
with distinct interpretations.

We will return to this important issue later (Lecture 20).

In the remainder of this lecture, we will briefly survey three main extensions
of generalized linear models.
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Suppose that Yi = (Yi1, Yi2, . . . , Yin) is a vector of correlated responses from
the ith subject.

To analyze such correlated data, we must specify, or at least make
assumptions about, the multivariate or joint distribution,

f (Yi1, Yi2, . . . , Yin)

The way in which the multivariate distribution is specified yields three
somewhat different analytic approaches:

1. Marginal Models

2. Mixed Effects Models

3. Transitional Models
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Marginal Models

One approach is to specify the marginal distribution at each time point:

f (Yij) for j = 1, 2, . . . , n

along with some assumptions about the covariance structure of the
observations.

The basic premise of marginal models is to make inferences about
population averages.

The term “marginal” is used here to emphasize that the mean response
modelled is conditional only on covariates and not on other responses (or
random effects).
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Illustration

Consider the Oral Treatment of Toenail Infection study.

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toenail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.
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Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.

Assume that the marginal probability of onycholysis follows a logistic model,

logit{Pr(Yij = 1)} = β1 + β2Monthij + β3Trti ∗Monthij

where Trt = 1 if treatment group B and 0 otherwise.

This is an example of a marginal model.

Note, however, that the covariance structure remains to be specified.
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Mixed Effects Models

Another possibility is to assume that a subset of the regression parameters
in the generalized linear model vary from subject to subject.

Specifically, we could assume that the data for a single subject are
independent observations from a distribution belonging to the exponential
family, but that the regression coefficients can vary from person to person.

That is, conditional on the random effects, it is assumed that the responses
for a single subject are independent observations from a distribution
belonging to the exponential family.
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Illustration

Consider the Oral Treatment of Toenail Infection study.

Suppose, for example, that the probability of onycholysis for participants
in the study is described by a logistic model, but that the risk for an
individual depends on her latent (perhaps environmentally and genetically
determined) “random response level”.

Then we might consider a model where

logit{Pr(Yij = 1|bi)} = β1 + β2Monthij + β3Trti ∗Monthij + bi

Note that such a model also requires specification of the random effects
distribution, F (bi).

This is an example of a generalized linear mixed effects model.

552



Transitional (Markov) Models

Finally, another approach is to express the joint distribution as a series of
conditional distributions,

f (Yi1, Yi2, . . . , Yin) = f (Yi1) f (Yi2|Yi1) · · · f (Yin|Yi1, . . . , Yi,n−1)

This is known as a transitional model (or a model for the transitions)
because it represents the probability distribution at each time point as
conditional on the past.

This provides a complete representation of the joint distribution.
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Illustration

Consider the Oral Treatment of Toenail Infection study.

We could write the probability model as

f (Yi1|Xi) f (Yi2|Yi1, Xi) f (Yi3|Yi1, Yi2, Xi) · · · f (Yi7|Yi1, Yi2, ..., Yi6, Xi)

That is, the probability of onycholysis at time 2 is modeled conditional on
presence/absence of onycholysis at time 1, and so on.

For example, a “1st-order” logistic model allowing dependence only on
previous response, is given by

logit{Pr(Yij = 1|Yi,j−1)} = β1 + β2Monthij + β3Trti ∗Monthij + β4Yi,j−1
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Summary

We have discussed the main features of generalized linear models

We have briefly outlined three main extensions of generalized linear models
to longitudinal data:

1. Marginal Models

2. Mixed Effects Models

3. Transitional Models

In the remainder of the course we focus on (i) Marginal Models, and
(ii) Mixed Effects Models.
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In general, transitional models are somewhat less useful for modelling
covariate effects.

Specifically, inferences from a transitional model can be potentially
misleading if a treatment or exposure changes risk throughout the follow-up
period.

In that case, the conditional risk, given previous history of the outcome, is
altered somewhat less strikingly.
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Marginal Models and Generalized Estimating
Equations

The basic premise of marginal models is to make inferences about
population averages.

The term ‘marginal’ is used here to emphasize that the mean response
modelled is conditional only on covariates and not on other responses or
random effects.

A feature of marginal models is that the models for the mean and the
‘within-subject association’ (e.g., covariance) are specified separately.
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Notation

Let Yij denote response variable for ith subject on jth occasion.

Yij can be continuous, binary, or a count.

We assume there are ni repeated measurements on the ith subject and each
Yij is observed at time tij.

Associated with each response, Yij, there is a p×1 vector of covariates, Xij.

Covariates can be time-invariant (e.g., gender) or time-varying (e.g., time
since baseline).
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Features of Marginal Models:

The focus of marginal models is on inferences about population averages.

The marginal expectation, µij = E (Yij|Xij), of each response is modelled
as a function of covariates.

Specifically, marginal models have the following three part specification:
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1. The marginal expectation of the response, µij, depends on covariates
through a known link function

g (µij) = β1X1ij + β2X2ij + · · ·+ βpXpij.

2. The marginal variance of Yij depends on the marginal mean according
to

Var (Yij|Xij) = φ v (µij)

where v (µij) is a known ‘variance function’ and φ is a scale parameter
that may need to be estimated.
Note: For continuous response, can allow Var(Yij|Xij) = φjv(µij).

3. The ‘within-subject association’ among the responses is a function of the
means and of additional parameters, say α, that may also need to be
estimated.
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For example, when α represents pairwise correlations among responses, the
covariances among the responses depend on µij(β), φ, and α:

Cov(Yij, Yik) = s.d.(Yij) Corr(Yij, Yik) s.d.(Yik)

=
√
φ v (µij) Corr(Yij, Yik)

√
φ v (µik)

where s.d.(Yij) is the standard deviation of Yij.

In principle, can also specify higher-order moments.
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Aside: Measures of Association for Binary Responses

With binary responses correlations are not the best choice for modelling
the association because they are constrained by the marginal probabilities.

For example, if E(Y1) = Pr(Y1 = 1) = 0.2 and E(Y2) = Pr(Y2 = 1) = 0.8,
then Corr(Y1, Y2) < 0.25.

The correlations must satisfy certain linear inequalities determined by the
marginal probabilities.

These constraints are likely to cause difficulties for parametric modelling of
the association.
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With binary responses, the odds ratio is a natural measure of association
between a pair of responses.

The odds ratio for any pair of binary responses, Yj and Yk, is defined as

OR(Yj, Yk) =
Pr(Yj = 1, Yk = 1)Pr(Yj = 0, Yk = 0)
Pr(Yj = 1, Yk = 0)Pr(Yj = 0, Yk = 1)

.

Note that the constraints on the odds ratio are far less restrictive than on
the correlation.

=⇒With binary response can model within-subject association in terms of
odds ratios rather than correlations.
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Examples of Marginal Models

Example 1. Continuous responses:

1. µij = β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., linear regression)

2. Var (Yij|Xij) = φj
(i.e., heterogeneous variance, but no dependence of variance on mean)

3. Corr (Yij, Yik) = α|k−j| (0 ≤ α ≤ 1)
(i.e., autoregressive correlation)
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Example 2. Binary responses:

1. Logit (µij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., logistic regression)

2. Var (Yij|Xij) = µij (1− µij)
(i.e., Bernoulli variance)

3. OR (Yij, Yik) = αjk
(i.e., unstructured odds ratios)
where

OR (Yij, Yik) =
Pr(Yij = 1, Yik = 1) Pr(Yij = 0, Yik = 0)
Pr(Yij = 1, Yik = 0) Pr(Yij = 0, Yik = 1)

.
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Example 3. Count data:

1. Log (µij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., Poisson regression)

2. Var (Yij|Xij) = φµij
(i.e., extra-Poisson variance or “overdispersion” when φ > 1)

3. Corr (Yij, Yik) = α
(i.e., compound symmetry correlation)
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Interpretation of Marginal Model Parameters

The regression parameters, β, have ‘population-averaged’ interpretations
(where ‘averaging’ is over all individuals within subgroups of the
population):

- describe effect of covariates on the average responses
- contrast the means in sub-populations that share common covariate

values

=⇒ Marginal models are most useful for population-level inferences.

The regression parameters are directly estimable from the data.

Of note, nature or magnitude of within-subject association (e.g.,
correlation) does not alter the interpretation of β.
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For example, consider the following logistic model,

logit(µij) = logit(E[Yij|Xij]) = β1Xij1 + β2Xij2 + · · ·+ βpXijp.

Each element of β measures the change in the log odds of a ‘positive’
response per unit change in the respective covariate, for sub-populations
defined by fixed and known covariate values.

The interpretation of any component of β, say βk, is in terms of changes
in the transformed mean (or “population-averaged”) response for a unit
change in the corresponding covariate, say Xijk.
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When Xijk takes on some value x, the log odds of a positive response is,

log
[

Pr(Yij=1|Xij1,...,Xijk=x,...,Xijp)
Pr(Yij=0|Xij1,...,Xijk=x,...,Xijp)

]
=

β1Xij1 + · · ·+ βkx+ · · ·+ βpXijp.

Similarly, when Xijk now takes on some value x+ 1,

log
[

Pr(Yij=1|Xij1,...,Xijk=x+1,...,Xijp)

Pr(Yij=0|Xij1,...,Xijk=x+1,...,Xijp)

]
=

β1Xij1 + · · ·+ βk(x+ 1) + · · ·+ βpXijp.

−→ βk is change in log odds for subgroups of the study population (defined
by any fixed values of Xij1, ..., Xij(k−1), Xij(k+1), ..., Xijp).
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Statistical Inference for Marginal Models

Maximum Likelihood (ML):

Unfortunately, with discrete response data there is no simple analogue of
the multivariate normal distribution.

In the absence of a “convenient” likelihood function for discrete data, there
is no unified likelihood-based approach for marginal models.

Alternative approach to estimation - Generalized Estimating Equations
(GEE).
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GENERALIZED ESTIMATING EQUATIONS

Avoid making distributional assumptions about Yi altogether.

Potential Advantages:

Empirical researcher does not have to be concerned that the distribution of
Yi closely approximates some multivariate distribution.

It circumvents the need to specify models for the three-way, four-way and
higher-way associations (higher-order moments) among the responses.

It leads to a method of estimation, known as generalized estimating
equations (GEE), that is straightforward to implement.
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The GEE approach has become an extremely popular method for analyzing
discrete longitudinal data.

It provides a flexible approach for modelling the mean and the pairwise
within-subject association structure.

It can handle inherently unbalanced designs and missing data with ease
(albeit making strong assumptions about missingness).

GEE approach is computationally straightforward and has been
implemented in existing, widely-available statistical software.
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The GEE estimator of β solves the following generalized estimating equations

N∑
i=1

D′V −1
i (yi − µi) = 0,

where Vi is the so-called “working” covariance matrix.

By “working” covariance matrix we mean that Vi approximates the true
underlying covariance matrix for Yi.

That is, Vi ≈ Cov (Yi), recognizing that Vi 6= Cov (Yi) unless the models for
the variances and the within-subject associations are correct.

Di = ∂µi/∂β is the “derivative” matrix (of µi with respect to the
components of β); Di(β) transforms from the original units of Yij (and
µij) to the units of g(µij).
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Therefore the generalized estimating equations depend on both β and α.

Because the generalized estimating equations depend on both β and α, an
iterative two-stage estimation procedure is required:

1. Given current estimates of α and φ, an estimate of β is obtained as the
solution to the ‘generalized estimating equations’

2. Given current estimate of β, estimates of ααα and φ are obtained based on
the standardized residuals,

rij = (Yij − µ̂ij) /v (µ̂ij)
1/2
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For example, φ can be estimated by

1/ (Nn− p)
N∑
i=1

n∑
j=1

r2
ij

The correlation parameters, α, can be estimated in a similar way.
For example, unstructured correlations, αjk = Corr (Yij, Yik), can be
estimated by

α̂jk = (1/(N − p)) φ̂−1
N∑
i=1

rijrik

Finally, in the two-stage estimation procedure we iterate between steps 1)
and 2) until convergence has been achieved.
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Properties of GEE estimators

β̂, the solution to the generalized estimating equations, has the following
properties:

1. β̂ is consistent estimator of β

2. In large samples, β̂ has a multivariate normal distribution

3. Cov(β̂) = B−1MB−1

where

B =
N∑
i=1

D′iV
−1
i Di
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M =
N∑
i=1

D′iV
−1
i Cov (Yi)V −1

i Di

B and M can be estimated by replacing α, φ, and β by their estimates, and
replacing Cov (Yi) by (Yi − µ̂i) (Yi − µ̂i)′.

Note: We can use this empirical or so-called ‘sandwich’ variance estimator
even when the covariance has been misspecified.
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Summary

The GEE estimators have the following attractive properties:

1. In many cases β̂ is almost efficient when compared to MLE.
For example, GEE has same form as likelihood equations for multivariate
normal models and also certain models for discrete data

2. β̂ is consistent even if the covariance of Yi has been misspecified

3. Standard errors for β̂ can be obtained using the empirical or so-called
‘sandwich’ estimator
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Case Study 1: Clinical Trial of Antibiotics for Leprosy

Placebo-controlled clinical trial of 30 patients with leprosy at the Eversley
Childs Sanitorium in the Philippines.

Participants were randomized to either of two antibiotics (denoted
treatment drug A and B) or to a placebo (denoted treatment drug C).

Baseline data on number of leprosy bacilli at 6 sites of body were recorded.

After several months of treatment, number of bacilli were recorded a second
time.

Outcome: Total count of number of leprosy bacilli at 6 sites.
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Table 48: Mean count of leprosy bacilli at six sites of the body (and
variance) pre- and post-treatment.

Treatment Group Baseline Post-Treatment

Drug A (Antibiotic) 9.3 5.3

(22.7) (21.6)

Drug B (Antibiotic) 10.0 6.1

(27.6) (37.9)

Drug C (Placebo) 12.9 12.3

(15.7) (51.1)

581



Question: Does treatment with antibiotics (drugs A and B) reduce
abundance of leprosy bacilli when compared to placebo (drug C).

We consider the following model for changes in the average count

log E(Yij) = log µij = β1+β2 timeij+β3 timeij×trt1i+β4 timeij×trt2i,

where Yij is count of bacilli for ith patient in jth period (j = 1, 2).

trt1 and trt2 are indicator variables for drugs A and B respectively.

The binary variable, time, denotes the baseline and post-treatment follow-
up periods, with time = 0 for the baseline period (period 1) and time = 1
for the post-treatment follow-up period (period 2).
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To complete specification of the marginal model, we assume

Var(Yij) = φµij,

where φ can be thought of as an overdispersion factor.

Finally, the within-subject association is accounted for by assuming a
common correlation,

Corr(Yi1, Yi2) = α.

The log-linear regression parameters, β, can be given interpretations in
terms of (log) rate ratios.
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Table 49: Parameters of the marginal log-linear regression model for the
leprosy bacilli data.

Treatment Group Period log(µij)

Drug A (Antibiotic) Baseline β1

Follow-up β1 + β2 + β3

Drug B (Antibiotic) Baseline β1

Follow-up β1 + β2 + β4

Drug C (Placebo) Baseline β1

Follow-up β1 + β2

584



Table 49 summarizes their interpretation in terms of the log expected counts
in the three groups at baseline and during post-treatment follow-up.

For example, eβ2 is the rate ratio of leprosy bacilli, comparing the follow-up
period to baseline, in the placebo group (drug C).

Similarly, eβ2+β3 is the corresponding rate ratio in the group randomized
to drug A.

Finally, eβ2+β4 is the corresponding rate ratio in the group randomized to
drug B.

Thus, β3 and β4 represents the difference between the changes in the log
expected rates, comparing drug A and B to the placebo (drug C).
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Estimated regression coefficients are displayed in Table 50 (with SEs based
on “sandwich” estimator).

A test of H0: β3 = β4 = 0, produces a (multivariate) Wald statistic,
W 2 = 6.99, with 2 degrees of freedom (p < 0.05).

Note: Magnitudes of effects are similar and indicate that treatment with
antibiotics reduces leprosy bacilli.

A test of H0: β3 = β4, produces a Wald statistic, W 2 = 0.08, with 1 degree
of freedom (p > 0.7).
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Table 50: Parameter estimates and standard errors from marginal log-linear
regression model for the leprosy bacilli data.

Variable Estimate SE Z

Intercept 2.3734 0.0801 29.62

timeij −0.0138 0.1573 −0.09

timeij × trt1i −0.5406 0.2186 −2.47

timeij × trt2i −0.4791 0.2279 −2.10

Estimated scale or dispersion parameter: φ̂ = 3.45.
Estimated working correlation: α̂ = 0.797.
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To obtain a common estimate of the log rate ratio, comparing both
antibiotics (drugs A and B) to placebo, we can fit the reduced model

log E(Yij) = log µij = β1 + β2 timeij + β3 timeij × trti,

where the variable trt is an indicator variable for antibiotics, with trt = 1
if a patient was randomized to either drug A or B and trt = 0 otherwise.

We retain the same assumptions about the variance and correlation as
before.

The estimated regression coefficients are displayed in Table 51
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Table 51: Parameter estimates and standard errors from marginal log-linear
regression model for the leprosy bacilli data.

Variable Estimate SE Z

Intercept 2.3734 0.0801 29.62

timeij −0.0108 0.1572 −0.07

timeij × trti −0.5141 0.1966 −2.62

Estimated scale or dispersion parameter: φ̂ = 3.41.
Estimated working correlation: α̂ = 0.780.
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The common estimate of the log rate ratio is −0.5141.

Rate ratio is 0.60 (or e−0.5141), with 95% confidence interval, 0.41 to 0.88,
indicating that treatment with antibiotics significantly reduces the average
number of bacilli when compared to placebo.

For placebo group, there is a non-significant reduction in the average
number of bacilli of approximately 1% (or [1 - e−0.0108]× 100%).

In the antibiotics group there is a significant reduction of approximately
40% (or [1 - e−0.0108−0.5141]× 100%).

Estimated pairwise correlation of 0.8 is relatively large.

Estimated scale parameter of 3.4 indicates substantial overdispersion.
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Case Study 2: Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toenail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.
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Assume that the marginal probability of onycholysis follows a logistic model,

logitE(Yij) = β1 + β2Monthij + β3Trti ∗Monthij

where Trt = 1 if treatment group B and 0 otherwise.

Here, we assume that Var(Yij) = µij(1− µij).

We also assume an unstructured correlation for the within-subject
association (i.e., estimate all possible pairwise correlations).
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Table 52: GEE estimates and standard errors (empirical) from marginal
logistic regression model for onycholysis data.

PARAMETER ESTIMATE SE Z

INTERCEPT -0.698 0.122 -5.74

Month -0.140 0.026 -5.36

Trt × Month -0.081 0.042 -1.94
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Results

From the output above, we would conclude that:

1. There is a suggestion of a difference in the rate of decline in the two
treatment groups (P = 0.052).

2. Over 12 months, the odds of infection has decreases by a factor of 0.19
[exp(-0.14*12)] in treatment group A.

3. Over 12 months, the odds of infection has decreases by a factor of 0.07
[exp(-0.221*12)] in treatment group B.

4. Odds ratio comparing 12 month decreases in risk of infection between
treatments A and B is approx 2.6 (or e12∗0.081).

5. Overall, there is a significant decline over time in the prevalence of
onycholysis for all randomized patients.
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Summary of Key Points

The focus of marginal models is on inferences about population averages.

The regression parameters, β, have ‘population-averaged’ interpretations
(where ‘averaging’ is over all individuals within subgroups of the
population):

- describe effect of covariates on marginal expectations or average
responses

- contrast means in sub-populations that share common covariate values

=⇒ Marginal models are most useful for population-level inferences.

Marginal models should not be used to make inferences about individuals
(“ecological fallacy”).
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GEE using PROC GENMOD in SAS

PROC GENMOD in SAS is primarily a procedure for fitting generalized
linear models to a single response.

However, PROC GENMOD has incorporated an option for implementing
GEE approach using a REPEATED statement (similar to PROC MIXED).

PROC GENMOD, as with almost all software for longitudinal analyses,
requires each repeated measurement in a longitudinal data set to be a
separate “record”.

If the data set is in a multivariate mode (or “wide format”), it must be
transformed to a univariate mode (or “long format”) prior to analysis.
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Table 53: Illustrative commands for a marginal logistic regression, with
within-subject associations specified in terms of correlations, using PROC
GENMOD in SAS.

PROC GENMOD DESCENDING;

CLASS id group;

MODEL y=group time group*time / DIST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=id / WITHINSUBJECT=time TYPE=UN;
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Table 54: Illustrative commands for a marginal logistic regression, with
within-subject associations specified in terms of log odds ratios, using
PROC GENMOD in SAS.

PROC GENMOD DESCENDING;

CLASS id group;

MODEL y=group time group*time / DIST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=id / WITHINSUBJECT=time LOGOR=FULLCLUST;
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Table 55: Illustrative commands for a marginal log-linear regression, with
within-subject associations specified in terms of correlations, using PROC
GENMOD in SAS.

PROC GENMOD;

CLASS id group;

MODEL y=group time group*time / DIST=POISSON LINK=LOG;

REPEATED SUBJECT=id / WITHINSUBJECT=time TYPE=UN;
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Generalized Linear Mixed Models

So far, we have discussed marginal models for longitudinal data.

Next, we consider a second type of extension, generalized linear mixed models
(GLMMs).

We describe how these models extend the conceptual approach represented
by the linear mixed effects model (Lectures 11-13).

We also highlight their greater degree of conceptual and analytic complexity
relative to marginal models.
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Generalized Linear Mixed Models

Postulate unobserved latent variables (random effects) shared by the
repeated measures on the same subject.

The basic premise is that we assume natural heterogeneity across
individuals in a subset of the regression coefficients.

That is, a subset of the regression coefficients (e.g., intercepts and slopes)
are assumed to vary across individuals according to some distribution.

Then, conditional on the random effects, it is assumed that the responses
for a single individual are independent observations from a distribution
belonging to the exponential family.
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Generalized Linear Mixed Models

The generalized linear mixed model can be considered in two steps:

First Step: Assumes that the conditional distribution of each Yij, given
individual-specific effects bi, belongs to the exponential family with
conditional mean,

g(E[Yij|bi]) = X ′ijβ + Z ′ijbi

where g(·) is a known link function and Zij is a known design vector, a
subset of Xij, linking the random effects bi to Yij.

The particular subset of the regression parameters β that vary randomly is
determined by components of Xij that comprise Zij.
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Second-Step: The bi are assumed to vary independently from one individual
to another and bi ∼ N (0, G).

Here, G is the covariance matrix for the random effects.

Note: There is an additional assumption of ‘conditional independence’.

That is, given bi, the responses Yi1, Yi2, ..., Yini are assumed to be mutually
independent.
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Example 1:

Binary logistic model with random intercepts:

logit(E[Yij|bi]) = β1Xij1 + · · ·+ βpXijp + bi

V ar(Yij|bi) = E[Yij|bi](1− E[Yij|bi]) (Bernoulli variance),

and bi ∼ N(0, σ2
b).

605



Example 2:

Random coefficients (random intercepts and slopes) Poisson regression
model:

log(E[Yij|bi]) = β1 + β2tij + b1i + b2itij

V ar(Yij|bi) = E[Yij|bi] (Poisson variance),

and bi ∼ N (0, G).

Note: G is the covariance matrix for b1i and b2i.
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Recall that marginal models consider the consequences of dependence
among the repeated measures on the same subject, via a “working”
covariance.

In contrast, GLMMs provide a potential explanation for the sources of
dependence among the repeated measures on the same subject, via the
introduction of random effects.

However, the introduction of random effects also has important implications
for the interpretation of the regression parameters in GLMMs.
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Interpretation of Fixed Effects

GLMMs are most useful when the scientific objective is to make inferences
about individuals rather than population averages.

Main focus is on the individual and the influence of covariates on a typical
(bi = 0) individual’s responses.

Regression parameters, βββ, measure the change in expected value of response
while holding constant other covariates and the random effects.
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For example, consider the following logistic model,

logit(E[Yij|bi]) = β1Xij1 + · · ·+ βpXijp + bi

with bi ∼ N(0, σ2).

Each element of βββ measures the change in the log odds of a ‘positive’
response per unit change in the respective covariate, for an individual with
propensity to respond positively, bi.

The interpretation of any component of β, say βk, is in terms of changes
in a specific individual’s log odds of response for a unit change in the
corresponding covariate, say Xijk.

Note: This is not always directly observable from the data.
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When Xijk takes on some value x, the log odds of a positive response is,

log
[

Pr(Yij=1|bi,Xij1,...,Xijk=x,...,Xijp)
Pr(Yij=0|bi,Xij1,...,Xijk=x,...,Xijp)

]
=

bi + β1Xij1 + · · ·+ βkx+ · · ·+ βpXijp.

Similarly, when Xijk now takes on some value x+ 1,

log
[

Pr(Yij=1|bi,Xij1,...,Xijk=x+1,...,Xijp)

Pr(Yij=0|bi,Xij1,...,Xijk=x+1,...,Xijp)

]
=

bi + β1Xij1 + · · ·+ βk(x+ 1) + · · ·+ βpXijp.

−→ βk is change in log odds for individual with propensity to respond, bi.
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This subject-specific interpretation of βk is more appealing when Xijk is a
time-varying covariate.

That is, when it is possible to hold bi (and remaining covariates) fixed and
also change the value of the covariate, Xijk.

Recall: Time-varying covariate is one whose value can change over time,
e.g., time since baseline, smoking status, and environmental exposures.

When Xijk is time-invariant the interpretation of βk is less transparent.

With a time-invariant covariate (e.g., gender), changing the value of the
covariate requires also a change in the index i of Xijk, say Xi′jk.
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When Xijk takes on some value x, the log odds of a positive response is,

log
[

Pr(Yij=1|bi,Xij1,...,Xijk=x,...,Xijp)
Pr(Yij=0|bi,Xij1,...,Xijk=x,...,Xijp)

]
=

bi + β1Xij1 + · · ·+ βkx+ · · ·+ βpXijp.

Similarly, when Xi′jk now takes on some value x+ 1,

log
[

Pr(Yi′j=1|bi′,Xi′j1,...,Xi′jk=x+1,...,Xi′jp)

Pr(Yi′j=0|bi′,Xi′j1,...,Xi′jk=x+1,...,Xi′jp)

]
=

bi′ + β1Xi′j1 + · · ·+ βk(x+ 1) + · · ·+ βpXi′jp.
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Even when we consider two subjects with identical covariates except for the
kth, the difference in log odds is

βk + (bi − bi′).

That is, βk has become confounded with bi − bi′.

This dilemma can only be resolved by assuming same value for the
unobserved random effects, bi = bi′; however, this contrast is not directly
observable.
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Estimation

The joint probability density function is given by:

f(Yi|Xi, bi)f(bi)

Estimation using maximum likelihood (ML) involves two steps:

First, ML estimation of βββ (and possibly φ) and G is based on the marginal
or integrated likelihood of the data

L(β, φ,G) =
N∏
i=1

∫
f(Yi|Xi, bi)f(bi)dbi

obtained by averaging over the distribution of the unobserved random
effects, bi.
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However, simple analytic solutions are rarely available.

In general, computations are difficult.

• maximization of the likelihood is iterative
• likelihood evaluation requires many integrations

In general, ML estimation requires numerical or Monte Carlo integration
techniques that can be computationally quite intensive.
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Numerical integration techniques, known as Gaussian quadrature, simply
approximate the integral as a weighted sum,

L(β, φ,G) ≈
N∏
i=1

K∑
k=1

f(Yi|bi = vk)wk,

where the known quadrature points (the weights, wk, and the evaluation
points, vk) are chosen to provide an accurate numerical approximation.

The number of quadrature points determines the degree of accuracy of the
approximation involved in replacing the integral by a weighted sum.
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In the second step, given ML estimates of βββ, φ and G, the random effects
can be predicted as follows,

b̂i = E(bi|Yi; β̂ββ, φ̂, Ĝ)

(Posterior mean)

Note that E(bi|Yi; β̂ββ, φ̂, Ĝ) involves integrating (or averaging) over the
distribution of the unobserved random effects, bi.

However, simple analytic solutions are rarely available and numerical or
Monte Carlo integration techniques are also required.
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Case Study 1

Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toenail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the effect of treatment on changes in an individual’s risk of
onycholysis over time?
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Assume that the conditional probability of onycholysis follows a logistic
model,

logit (E[Yij|bi]) = β1 + β2Monthij + β3Trti ∗Monthij + bi

where Trt = 1 if treatment group B and 0 otherwise.

Here, we assume that Var(Yij) = E(Yij|bi) [1− E(Yij|bi)].

We also assume bi ∼ N(0, σ2
b).
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Table 56: ML estimates and standard errors from random effects logistic
regression model for onycholysis data.

PARAMETER ESTIMATE SE Z

INTERCEPT -1.697 0.330 -5.15

Month -0.389 0.043 -8.97

Trt × Month -0.142 0.065 -2.19

σ2
b 16.034 3.039 5.28

ML based on 100-point adaptive Gaussian quadrature.
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Results

From the output above, we would conclude that:

1. There is a significant difference in the rate of decline of risk for individuals
in the two treatment groups (P < 0.05).

2. Over 12 months, the odds of infection decreases by a factor of 0.01 [or
exp(-0.389*12)] for an individual receiving treatment A.

3. Over 12 months, the odds of infection decreases by a factor of 0.002 [exp(-
0.531*12)] for an individual receiving treatment B.

4. Odds ratio comparing 12 month decreases in risk between treatments A
and B is approx 5.5 (or e12∗0.142).

5. Estimated variance of the random intercepts, σ̂2
b = 16.03 is relatively

large.
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For example, the estimated variance implies that 95% of patients have a
baseline risk of infection between

exp(−1.697± 1.96×
√

16.034)
1 + exp(−1.697± 1.96×

√
16.034)

(or between 0 and 0.997).

This suggests substantial heterogeneity of risk.
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Case Study 2

Clinical trial of anti-epileptic drug progabide

Randomized, placebo-controlled study of treatment of epileptic seizures
with progabide.

Patients were randomized to treatment with progabide, or to placebo in
addition to standard therapy.

Response variable: Count of number of seizures

Measurement schedule: Baseline measurement during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Interested in the effect of treatment with progabide on changes in an
individual’s rate of seizures?
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Assume conditional rate of seizures follows the mixed effects loglinear
model,

log(E[Yij|bi]) = log(tij) + β1 + b1i + β2timeij + b2itimeij+
β3trti + β4trti ∗ timeij

where tij = length of period; timeij = 1 if periods 1-4, 0 if baseline; trti =
1 if progabide, 0 if placebo.

(b1i, b2i) are assumed to have a bivariate normal distribution with zero mean
and covariance G.

Also, we assume that

Var(Yij|bi) = E[Yij|bi].
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Table 57: Subject-specific log expected seizure rates in the two groups at
baseline and during post-baseline follow-up.

Treatment Group Period log
(
E(Yij|bi)

Tij

)

Placebo Baseline β1 + b1i

Follow-up (β1 + b1i) + (β2 + b2i)

Progabide Baseline (β1 + b1i) + β3

Follow-up (β1 + b1i) + (β2 + b2i) + β3 + β4
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Parameter estimates and standard errors from mixed effects log-linear
regression model for the seizure data.

Parameter Estimate SE Z

Intercept 1.0707 0.1406 7.62
timeij −0.0004 0.1097 −0.00
trti 0.0513 0.1931 0.27
trti × timeij −0.3065 0.1513 −2.03

Var(b1i) 0.5010 0.1010 4.96
Var(b2i) 0.2334 0.0608 3.84
Cov(b1i, b2i) 0.0541 0.0559 0.97

ML based on 50-point adaptive Gaussian quadrature.
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Results of the analysis suggest:

1. A patient treated with placebo has the same expected seizure rate before
and after randomization [exp(−0.0004) ≈ 1].

2. A patient treated with progabide has expected seizure rate reduced after
treatment by approximately 26% [1− exp(−0.0004− 0.3065) ≈ 0.26].

3. Estimated variance of the random intercepts and slopes is relatively large

4. Heterogeneity should not be ignored
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Summary of Key Points

GLMMs extend the conceptual approach represented by the linear mixed
effects model.

GLMMs assume natural heterogeneity across individuals in a subset of the
regression coefficients.

The focus of GLMMs is on inferences about individuals.

The regression parameters, β, have ‘subject-specific’ interpretations in
terms of changes in the transformed mean response for a specific individual.
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GLMM using PROC NLMIXED in SAS

PROC NLMIXED in SAS is a very general and versatile procedure for
fitting non-linear mixed effects models.

Here we focus on the use of PROC NLMIXED to fit GLMMs to longitudinal
data.

PROC NLMIXED, as with almost all software for longitudinal analyses,
requires each repeated measurement in a longitudinal data set to be a
separate “record”.

If the data set is in a multivariate mode (or “wide format”), it must be
transformed to a univariate mode (or “long format”) prior to analysis.
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PROC NLMIXED directly maximizes an approximate integrated likelihood
via numerical quadrature.

Caution: Likelihood approximation may not be accurate if too few
quadrature points are used.

PROC NLMIXED has an option for the number of quadrature points
used during evaluation of integrals, e.g. QPOINTS=50 specifies that 50
quadrature points be used for each random effect.
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Table 58: Illustrative commands for a mixed effects logistic regression, with
randomly varying intercepts, using PROC NLMIXED in SAS.

PROC NLMIXED QPOINTS=50;

PARMS beta1=-3.0 beta2=-0.2 beta3=0.5 beta4=0.1 g11=0 to 5 by 0.5;

eta = beta1 + beta2*time + beta3*group + beta4*group*time + b1;

mu = exp(eta)/(1+exp(eta));

MODEL y ∼ BINARY(mu);

RANDOM b1 ∼ NORMAL(0, g11) SUBJECT=id;

PREDICT mu OUT=predmean;
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Table 59: Illustrative commands for mixed log-linear regression, with
randomly varying intercepts & slopes, using PROC NLMIXED in SAS.

PROC NLMIXED QPOINTS=50;

PARMS beta1=1.0 beta2=0.0 beta3=0.0 beta4=-0.5 g11=0 to 2 by 0.5
g22=0 to 2 by 0.5 g12=-1 to 1 by 0.25;

eta = beta1 + beta2*time + beta3*group + beta4*group*time + b1 + b2*time;

mu = exp(eta);

MODEL y ∼ POISSON(mu);

RANDOM b1 b2 ∼ NORMAL([0,0], [g11, g12, g22]) SUBJECT=id;

PREDICT beta2+b2 OUT=slopes;
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PARMS statement: lists names of all parameters (fixed effects and the
covariance parameters for the random effects).

PARMS statement is also used to specify initial values (or a grid of initial
values) for the parameters.

Caution: Parameters not listed on PARMS statement are assigned initial
value of 1; this can be a poor choice and may lead to convergence problems.

Program statements: used to define linear predictor (the fixed and random
effects) and to relate mean response to the linear predictor.

PROC NLMIXED allows multiple program statements.
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MODEL statement: specifies response variable and conditional distribution
of response given the random effects.

PROC NLMIXED includes options for the following exponential family
distributions:

NORMAL(m, v): specifies a normal distribution with mean m and
variance v.

BINARY(p): specifies a Bernoulli distribution with probability of success p.
BINOMIAL(n, p): specifies a binomial distribution with n trials and

probability of success p.
POISSON(m): specifies a Poisson distribution with mean m.
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RANDOM effects ∼ distribution SUBJECT=variable;
Random statement defines the random effects and a variable that
determines the clustering of observations within an individual via
SUBJECT option.

Note: Data should be sorted by the SUBJECT variable since PROC
NLMIXED assumes a new realization of the random effects occurs whenever
the SUBJECT=variable changes.

All random effects are assumed to have a normal distribution, normal(m, v),
with mean (vector) m and variance (covariance matrix) v.
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For a single random effect the syntax is:

RANDOM b1 ∼ NORMAL(0, g11) SUBJECT=id;

For two random effects the corresponding syntax requires the use of brackets
for the mean vector and covariance matrix:

RANDOM b1 b2 ∼ NORMAL( [0, 0], [g11, g12, g22] ) SUBJECT=id;

Only the non-redundant, lower triangle of the covariance matrix is included
in the parameters of the multivariate normal distribution for the random
effects.
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Contrasting Marginal and Mixed Effects Models
for Longitudinal Data

So far, we have discussed two main extensions of generalized linear models:

1. Marginal Models
2. Generalized Linear Mixed Models

There are important distinctions between these two broad classes of models
that go beyond simple differences in approaches for accounting for the
within-subject association.

These two classes of models have somewhat different targets of inference
and address subtly different questions regarding longitudinal change in the
response.
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A marginal model for the mean response is given by

g(µij) = g[E(Yij|Xij)] = X ′ijβ = β1Xij1 + · · ·+ βpXijp,

where g(·) is an appropriate non-linear link function (e.g., logit or log).

In marginal models, β’s have interpretation in terms of changes in the
transformed mean response in the study population, and their relation to
covariates.

The population means can be expressed in terms of the inverse link function,
say h(·) = g−1(·),

h[g(µij)] = µij = E(Yij|Xij) = h(β1Xij1 + · · ·+ βpXijp).
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Next, consider the generalized linear mixed model

g[E(Yij|Xij, bi)] = X ′ijβ
∗ + Z ′ijbi,

where the random effects bi have a distribution with mean zero and
covariance matrix G.

The regression coefficients β∗ have subject-specific interpretations in terms
of changes in the transformed mean response for a specific individual.

β∗ do not describe changes in the transformed mean response in the study
population.
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In GLMMs there is an implied model for the marginal means.

This can be obtained by averaging over distribution of the random effects,

µij = E(Yij|Xij)
= E[E(Yij|Xij, bi)]
= E[h(X ′ijβ

∗ + Z ′ijbi)]
=

∫∞
−∞ h(X ′ijβ

∗ + Z ′ijbi)f(bi)dbi.

However, this expression for E(Yij|Xij) does not, in general, have a closed-
form expression and, moreover,

E(Yij|Xij) 6= h(X ′ijβ)

for any β, e.g., logistic mixed effects model 6= marginal logistic model.

That is, marginalized model doesn’t satisfy generalized linear model.
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Simple Numerical Illustration

Consider hypothetical data on true propensity for disease, Pr(Yij = 1|bi),
for three individuals measured at baseline (pre) and following treatment
with a new drug intended to reduce the risk of disease (post).

The three individuals are discernibly different in terms of their underlying
propensity for disease at baseline.

This heterogeneity can be expressed in terms of random effects, bi.

Individuals A, B, and C have “high”, “medium” and “low” underlying risk
for disease.

Assume target population is comprised of an equal number of individuals
that fall into these three distinct risk groups.
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Hypothetical data on the true propensity for disease, at baseline and
post-baseline, for three individuals with heterogeneous propensities for
disease.

Individual Pre Post Difference Log(OR)

A 0.80 0.67 -0.13 -0.68
B 0.50 0.33 -0.17 -0.71
C 0.20 0.11 -0.09 -0.70

Pop. Average 0.50 0.37 -0.13

Final row of table contains the population averages (obtained as equally-
weighted means).
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For a linear function of the propensity for disease (i.e., the difference), the
“difference of the averages” is equal to the “average of the differences”.

Taking the average of the subject-specific effects (as a single number
summary of the subject-specific effects),

−0.13− 0.17− 0.09
3

= −0.13.

Alternatively, can compare the average propensity for disease at baseline
(0.5) and post-baseline (0.37).

(0.37− 0.50) = −0.13.

The latter can be thought of as a contrast of population averages.
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With a non-linear function of the propensity for disease, a “non-linear
contrast of the averages” is not equal to the “average of the non-linear
contrasts”.

Consider the log odds ratios:

Taking the average of the subject-specific effects (as a single number
summary of the subject-specific effects),

−0.68− 0.71− 0.70
3

= −0.697.

Alternatively, compare the log odds of disease in the population at baseline,
log(0.5/0.5) = 0 and post-baseline, log(0.37/0.63) = −0.532.

This comparison yields a measure of effect, −0.532, which is approximately
25% smaller than the summary of the subject-specific effect, −0.697.
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Individual Pre Post Difference Log(OR)

A 0.80 0.67 -0.13 -0.68
B 0.50 0.33 -0.17 -0.71
C 0.20 0.11 -0.09 -0.70

Pop. Average 0.50 0.37 -0.13

In marginal models, the regression parameters describe the margins of the
table.

In GLMMs, the fixed effects describe the interior of the table.

Next we consider a graphical illustration that highlights the differences
between these two approaches.
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Graphical Illustration

Suppose Yi is a vector of binary responses and it is of interest to describe
changes in the log odds of success over time.

A logistic regression model, with randomly varying intercepts, is given by

logit[E(Yij|bi)] = β∗1 + β∗2tij + bi

where tij = 0 at baseline and tij = 1 post-baseline.

The bi are assumed to have a normal distribution with zero mean and
variance σ2

b = Var(bi).

Let β∗1 = 1.5, β∗2 = −3.0, and Var(bi) = 1.0.
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At baseline, log odds has a normal distribution with mean = median = 1.5
(see shaded densities).

Note, however, that subject-specific probabilities of disease have a
negatively skewed distribution with median, but not mean, of 0.82.

The mean of the subject-specific probabilities is 0.78.

Thus, probability of disease for a “typical” individual from the population
(0.82) is not the same as the prevalence of disease in the same population
(0.78).
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Similarly, the log odds of disease post-baseline has a normal distribution
with mean = median = −1.5 (see unshaded densities).

However, subject-specific post-baseline probabilities of disease have a
positively skewed distribution with median, but not mean, of 0.18.

The mean of the subject-specific probabilities is 0.22.

Thus, probability of disease post-baseline for a “typical” individual from
the population (0.18) is not the same as the prevalence of disease in the
same population (0.22).
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The effect of treatment on the log odds of disease for a typical individual
from the population, β∗2 = −3.0, is not the same as the contrast of
population log odds.

The latter is what is estimated in a marginal model, say

logit{E(Yij)} = β1 + β2 tij,

and can be obtained by comparing the log odds of disease in the population
at baseline, log(0.78/0.22) = 1.255, with the log odds of disease in the
population post-baseline, log(0.22/0.78) = −1.255.

This yields a population-averaged measure of effect, β2 = −2.51, which is
approximately 15% smaller than β∗2 , the subject-specific effect of treatment.
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Case Study

Cross-Over Trial of Cerebrovascular Deficiency

• Two-period cross-over trial comparing effects of active drug to placebo
on cerebrovascular deficiency

• 67 patients randomly allocated to two treatment sequences

• 34 patients receiving Placebo → Active

• 33 patients receiving Active → Placebo

• Each patient has a bivariate binary response vector, Yi = (Yi1, Yi2)
denoting whether an electrocardiogram was normal (0) or abnormal (1).
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Data from a two-period cross-over trial comparing the effects of active drug
to placebo on cerebrovascular deficiency. The response indicates whether
an electrocardiogram was normal (0) or abnormal (1).

Response (Period 1, Period 2)
Sequence (1,1) (1,0) (0,1) (0,0)

Sequence 1 (P → A) 6 0 6 22
Sequence 2 (A → P) 9 4 2 18

P: Placebo; A: Active drug.
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First, consider marginal logistic model

logit(µij) = logit[Pr(Yij = 1)] = β1 + β2Treatment + β3Period

where Treatment (0 = Placebo, 1 = Active drug) and Period (0 = Period
1, 1 = Period 2).

The within subject association between the two responses was modelled in
terms of a common log odds ratio, α,

log
Pr(Yi1 = 1, Yi2 = 1) Pr(Yi1 = 0, Yi2 = 0)
Pr(Yi1 = 1, Yi2 = 0) Pr(Yi1 = 0, Yi2 = 1)

= α.
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Parameter estimates and standard errors from marginal logistic regression
model for the cerebrovascular deficiency data.

Parameter Estimate SE Z

Intercept -1.2433 0.2999 -4.15
Treatment 0.5689 0.2335 2.44
Period 0.2951 0.2319 1.27

log OR (α) 3.5617 0.8148 4.37
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The results indicate that treatment with the active drug is harmful,
increasing the rates of abnormal electrocardiograms.

The odds of an abnormal electrocardiogram is 1.77 (or e0.57) times higher
when treated with active drug versus placebo.

The estimate of the within-subject association is α̂ = 3.56, indicating that
there is very strong positive association (OR= 35.2).
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Next, consider logistic regression model with a random patient effect,

logit[E(Yij|bi)] = β∗1 + β∗2Treatment + β∗3Period + bi

where the random effect bi is assumed to have a normal distribution with
zero mean and variance, σ2

b = Var(bi).
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Parameter estimates and standard errors from mixed effects logistic
regression model for the cerebrovascular deficiency data.

Parameter Estimate SE Z

Intercept -4.0817 1.6711 -2.44
Treatment 1.8631 0.9269 2.01
Period 1.0376 0.8189 1.27

σ2
b = Var(bi) 24.4365 18.8500 1.30

ML based on 100-point adaptive Gaussian quadrature.
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The results also indicate that treatment with the active drug is harmful,
increasing the patient-specific risk of an abnormal electrocardiogram.

In particular, a patient’s odds of an abnormal electrocardiogram is 6.4 (or
e1.86) times higher when treated with active drug than when treated with
the placebo.

The estimate of the variance of bi, σ̂2
b = 24.4, indicates that there is very

substantial between-patient variability in their propensity for abnormal
electrocardiograms.
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Comparison of the two estimated effects of treatment, eβ̂2 = 1.8 and
eβ̂
∗
2 = 6.4, from the marginal and mixed effects logistic regression models

highlights the distinction between these two analytic approaches.

β̂2 from marginal model describes how the average rates (expressed in terms
of odds) of abnormal ECGs could be increased in the study population if
patients are treated with the active drug.

β̂∗2 from the mixed effects model describes how the odds of an abnormal
ECG increases for any patient treated with the active drug.

Thus, a population-level analysis understates the individual risk, and vice
versa.
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In summary, the answer to the question “what are the side effects of the
active drug” will depend on whether scientific interest is in its impact
on the study population or on an individual drawn at random from that
population.

With marginal models the main focus is on inferences about the study
population.

With generalized linear mixed models the main focus is on inferences about
individuals.
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Aside

Does the very large estimate of variance, σ̂2
b = 24.4, accurately reflect

between-patient variability in the risk of abnormal electrocardiogram?

In this example, a large proportion of subjects (82%) had same response,
(0,0) or (1,1), at both occasions.

This feature can only be captured by a normal distribution for the log odds
with large variance.

When number of repeated binary responses is small, and there is a large
proportion of subjects with positive (negative) responses at all occasions,
the normal assumption for bi is questionable.
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Concluding Remarks

Unlike linear models, where the concepts of regression analysis can be
applied quite robustly, longitudinal analysis of categorical data raises many
subtle issues.

Different models for categorical outcomes can give discernibly different
results.

The choice and meaning of longitudinal models for categorical outcomes
require somewhat greater care.

With different targets of inference, different models for categorical outcomes
address subtly different questions regarding longitudinal change.
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Choice among models?

• should be guided by specific scientific question of interest

• answers to different questions will usually demand that different models
have to be applied

• different questions will often produce different, albeit compatible, answers

• “one size does not fit all”
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Multilevel Models

Until today, this course has focused on the analysis of longitudinal data.

Mixed models can also be used to analyze multilevel data.

Hierarchical or multilevel data arise when there is a clustered/grouped
structure to the data.

Data of this kind frequently arise in the social, behavioral, and health
sciences since individuals can be grouped in so many different ways.

For example, in studies of health services and outcomes, assessments of
quality of care are often obtained from patients who are nested within
different clinics.
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Such data can be regarded as hierarchical/multilevel, with patients referred
to as the level 1 units and clinics the level 2 units.

In this example there are two levels in the data hierarchy and, by convention,
the lowest level of the hierarchy is referred to as level 1.

The term “level”, as used in this context, signifies the position of a unit of
observation within a hierarchy.

Clustering in multilevel data can be due to a naturally occurring hierarchy
in the target population or a consequence of study design (or sometimes
both).
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Naturally Occurring Data Hierarchies

Studies of nuclear families: observations on the mother, father, and children
(level 1 units) nested within families (level 2 units).

Studies of health services/outcomes: observations on patients (level 1 units)
nested within clinics (level 2 units).

Studies of education: observations on children (level 1 units) nested within
classrooms (level 2 units).

Note: Naturally occurring hierarchical data structures can have more than
two levels, e.g., children (level 1 units) nested within classrooms (level 2
units), nested within schools (level 3 units).
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Clustering as Consequence of Study Design

Longitudinal Studies: the clusters are composed of the repeated
measurements obtained from a single individual at different occasions.

In longitudinal studies the level 1 units are the repeated occasions of
measurement and the level 2 units are the subjects.

Cluster-Randomized Clinical Trials: Groups (level 2 units) of individuals
(level 1 units), rather than the individuals themselves, are randomly
assigned to different treatments or interventions.
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Complex Sample Surveys: Many national surveys use multi-stage
sampling, e.g., NHANES.

For example, in 1st stage, “primary sampling units” (PSUs) are defined
based on counties in the United States. A first-stage random sample of
PSUs are selected. In 2nd stage, within each selected PSU, a random
sample of census blocks are selected. In 3rd stage, within selected census
blocks, a random sample of households are selected.

Resulting data can be regarded as hierarchical, with households being the
level 1 units, area segments the level 2 units, and counties the level 3 units.
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Finally, clustering can be due to both study design and naturally occurring
hierarchies in the target population.

Example: Clinical trials are often conducted in many different centers to
ensure sufficient numbers of patients and/or to assess the effectiveness of
the treatment in different settings.

Observations from a multi-center longitudinal clinical trial can be regarded
as hierarchical data with 3 levels, with repeated measurement occasions
(level 1 units) nested within subjects (level 2 units) nested within clinics
(level 3 units).
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Distinctive Feature of Multilevel Data

Distinctive feature of multilevel data is that they are clustered.

A consequence of this clustering is that measurement on units within a
cluster are more similar than measurements on units in different clusters.

For example, two children selected at random from the same family are
expected to respond more similarly than two children randomly selected
from different families.

The clustering can be expressed in terms of correlation among the
measurements on units within the same cluster.

Statistical models for hierarchical data must account for the intra-cluster
correlation at each level; failure to do so can result in misleading inferences.
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Multilevel Linear Models

The dominant approach to analysis of multilevel data employs a type of
linear mixed effects model known as the hierarchical linear model.

The correlation induced by clustering is described by random effects at each
level of the hierarchy.

Note: In a multilevel model, the response is obtained at the first level, but
covariates can be measured at any level.

For example, if we are studying BMI, we can measure individual diets,
family attitudes about food and purchasing habits, and community
attributes such as the density of fast-food restaurants.
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Combining covariates measured at different levels of the hierarchy within a
single regression model is central to hierarchical modelling.

We begin by introducing the ideas with the two-level model.

Later we move to the three-level model to illustrate the general approach.
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Two-Level Linear Models

Notation:

Let i index level 1 units and j index level 2 units (by convention, the
subscripts are ordered from the lowest to the highest level).

We assume n2 level 2 units in the sample.

Each of these clusters (j = 1, 2, · · · , n2) is composed of n1j level 1 units.

For example, in a two-level study of physician practices, we would study n2

practices, with n1j patients in the jth practice.

677



Let Yij denote the response for patient i in the jth practice.

Associated with each Yij is a 1× p (row) vector of covariates, Xij

Consider the following model for the mean:

E(Yij) = Xijβ

For example, in a multi-center clinical trial comparing two treatments, we
might assume that:

E(Yij) = β1 + β2Trtij
where Trtij is an indicator variable for treatment group (or Trtj if treatment
is constant within practice).
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The two-level hierarchical linear model assumes that the correlation within
practices can be described by a random effect.

Thus, we assume that
Yij = Xijβ + bj + εij

Or, more generally,
Yij = Xijβ + Zijbj + εij

with more than 1 random effect.
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Features of the Two-Level Linear Model

1. Model defines two sources of variation. Magnitudes of within- and
between-cluster variation determine degree of clustering/correlation.

2. For a given level 2 unit, random effects are assumed constant across level
1 units.

3. Conditional expectation of Yij, given identity of the level 2 group, is

Xijβ + Zijbj

4. Level 1 observations are assumed to be conditionally independent given
the random effects.

The two-level model is identical to the linear mixed model with intraclass
correlation structure for repeated measurements (albeit with reversal of
subscripting!).
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Three-Level Linear Models

Next, consider a three-level longitudinal clinical trial in which

(1) physician practices are randomized to treatment,

(2) patients are nested within practices, and

(3) patients are measured at baseline and at three occasions after treatment.

Level 1 is occasions, level 2 is patients, and level 3 is practice.
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Let Yijk denote response at the ith observation of the jth patient in the kth

practice.

Covariates can be measured at any of three levels. However, we now
introduce random effects to represent clustering at both levels 2 and 3.

The general three-level linear model is written as follows:

Yijk = Xijkβ + Z
(3)
ijkb

(3)
k + Z

(2)
ijkb

(2)
jk + εijk
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Example: Three-Level Model for the
Multi-Level Longitudinal Clinical Trial

Let tijk denote the time from baseline at which Yijk is obtained.

Also, let Trtij denote the treatment given to the jth patient at the ith

occasion.
The treatment may be constant over occasions for a given patient (Trtj).

A hierarchical three-level model for the response is given by

Yijk = β1 + β2tijk + β3(Trtj × tijk) + b
(3)
k + b

(2)
jk + εijk

This model assumes a common intercept and separate linear trends over
time in the two treatment groups.
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If
Var(b(3)

k ) = G(3),Var(b(2)
jk ) = G(2), and Var(εijk) = σ2,

and all random effects are assumed to be independent, then

Var(Yijk) = G(2) +G(3) + σ2

and the covariance between two observations from the same patient is

G(2) +G(3)

Thus, the observations for a given patient have an intraclass correlation
structure, with

Corr(Yijk, Yijl) =
G(2) +G(3)

G(2) +G(3) + σ2
.

Because this is a linear mixed model,

E(Yijk) = β1 + β2tijk + β3(Trtij × tijk)
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Estimation

For the three-level linear model, the standard distributional assumptions
are that:

b
(3)
k ∼ N(0, G(3)), b(2)

jk ∼ N(0, G(2)), and εijk ∼ N(0, σ2)

Given these assumptions, estimation of the model parameters is relatively
straightforward. The GLS estimate of β is given by

β =
{ n3∑
k=1

(X ′kV
−1
k Xk)

}−1
n3∑
k=1

(X ′kV
−1
k Yk)

where Yk is a column vector of length
∑n2k
j=1 n1jk, the number of observations

in the kth cluster. Xk is the corresponding matrix of covariates, and Vk is
the covariance matrix of Yk.
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Estimation (Continued)

As before, we use REML (or ML) to obtain estimates of G(3), G(2), and σ2.

Once these estimates are obtained, we can estimate the covariance matrices,
Vk, and substitute those estimates into the expression for the GLS
estimator.

This estimation procedure is available in PROC MIXED in SAS.

It is also available in MLwiN and HLM, two stand-alone programs developed
for multilevel modeling.
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Case Study 1: Developmental Toxicity Study of
Ethylene Glycol

Developmental toxicity studies of laboratory animals play a crucial role in
the testing and regulation of chemicals.

Exposure to developmental toxicants typically causes a variety of adverse
effects, such as fetal malformations and reduced fetal weight at term.

In a typical developmental toxicity experiment, laboratory animals are
assigned to increasing doses of a chemical or test substance.

Consider an analysis of data from a development toxicity study of ethylene
glycol (EG).
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Ethylene glycol is used as an antifreeze, as a solvent in the paint and plastics
industries, and in the formulation of various types of inks.

In a study of laboratory mice conducted through the National Toxicology
Program (NTP), EG was administered at doses of 0, 750, 1500, or 3000
mg/kg/day to 94 pregnant mice (dams) beginning just after implantation.

Following sacrifice, fetal weight and evidence of malformations were
recorded for each live fetus.

In our analysis, we focus on the effects of dose on fetal weight.
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Summary statistics (ignoring clustering in the data) for fetal weight for the
94 litters (composed of a total of 1028 live fetuses) are presented in Table 60.

Fetal weight decreases monotonically with increasing dose, with the average
weight ranging from 0.97 (gm) in the control group to 0.70 (gm) in the group
administered the highest dose.

The decrease in fetal weight is not linear in increasing dose, but is
approximately linear in increasing

√
dose.
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Table 60: Descriptive statistics on fetal weight.

Dose Weight (gm)

(mg/kg)
√

Dose/750 Dams Fetuses Mean St. Deviation†

0 0 25 297 0.972 0.098
750 1 24 276 0.877 0.104

1500 1.4 22 229 0.764 0.107
3000 2 23 226 0.704 0.124

†Calculated ignoring clustering.
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Because the observations are clustered within dam, the analysis must take
account of clustering.

If it does not, the apparent sample size for comparisons between doses will
be exaggerated.

To fit a two-level model that is linear in sqrt(dose),

Yij = β1 + β2

√
dose/750 + bj + εij,

we can use the following commands:
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DATA toxicity;
INFILE ’c:\bio226\datasets\ethyleneglycol.txt’;
INPUT id dose weight mal;
newdose=sqrt(dose/750);
RUN;

PROC MIXED DATA=toxicity;
CLASS id;
MODEL weight = newdose / SOLUTION CHISQ;
RANDOM INTERCEPT / SUBJECT=id G;

RUN;
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Results

Variable Estimate SE Z

Fixed Effects

Intercept 0.98 0.02 61.3
Newdose -0.13 0.01 -10.9

Random Effects

Level 2 Variance
( σ2

2 × 100) 0.73 0.12 6.1

Level 1 Variance
( σ2

1 × 100) 0.56 0.03 21.6
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The estimate of σ2
2 indicates significant clustering of weights within litter.

The estimated within-litter correlation is

ρ̂ = σ̂2
2/(σ̂

2
2 + σ̂2

1)

= 0.73/(0.73 + 0.56)

= 0.57

The estimated decrease in weight, comparing the highest dose to 0 dose, is
0.27 (0.22, 0.33).

The model-based and empirical (sandwich) standard errors are very similar
(not shown), indicating that the random effects structure is adequate.

It is also easy to test for linearity on the square root scale, though we have
data at only four doses.
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Case Study 2: The Television, School, and Family
Smoking Prevention and Cessation Program

A randomized study with a 2 by 2 factorial design:
Factor 1: A school-based social-resistance curriculum (CC)
Factor 2: A television-based prevention program (TV)

We report results for 1,600 seventh graders from 135 classes in 28 schools
in Los Angeles

The response variable, the tobacco and health knowledge scale (THKS),
was administered before and after the intervention.

We consider a linear model for post-intervention THKS, with baseline
THKS as a covariate.
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Descriptive Statistics

Pre-THKS Post-THKS
CC TV n Mean Std Dev Mean Std Dev

No No 421 2.15 1.18 2.36 1.30

No Yes 416 2.09 1.29 2.54 1.44

Yes No 380 2.05 1.29 2.97 1.40

Yes Yes 383 1.98 1.29 2.82 1.31

The mean value of Pre-THKS does not differ significantly among treatment
groups.
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Three-Level Model
Model the adjusted change in THKS scores as function of main effects of
CC and TV and the CC × TV interaction:

Yijk = β1 + β2Pre-THKS + β3CC + β4TV + β5CC×TV + b
(3)
k + b

(2)
jk + εijk.

In a slightly modified notation, assume

εijk ∼ N(0, σ2
1)

b
(2)
jk ∼ N(0, σ2

2)

b
(3)
k ∼ N(0, σ2

3)

This is the standard hierarchical (or multilevel) linear model with school
and classroom effects modelled by incorporating random effects at levels 3
and 2, respectively (level 1 units are the children).
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PROC MIXED in SAS

DATA tvandcc;
INFILE ’c:\bio226\datasets\tv.txt’;
INPUT sid cid cc tv baseline THKS;

RUN;

PROC MIXED DATA=tvandcc COVTEST;
CLASS sid cid;
MODEL thks = baseline cc tv cc*tv / S;
RANDOM INTERCEPT / SUBJECT=sid G ;
RANDOM INTERCEPT / SUBJECT=cid G ;

RUN;
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Table 61: Fixed effects estimates for the THKS scores.

Parameter Estimate SE Z

Intercept 1.702 0.1254 13.57
Pre-Intervention THKS 0.305 0.0259 11.79
CC 0.641 0.1609 3.99
TV 0.182 0.1572 1.16
CC × TV −0.331 0.2245 −1.47
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Table 62: Random effects estimates for the THKS scores.

Parameter Estimate SE Z
Level 3 Variance:

σ2
3 0.039 0.0253 1.52

Level 2 Variance:
σ2

2 0.065 0.0286 2.26
Level 1 Variance:

σ2
1 1.602 0.0591 27.10
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Consider REML estimates of the three sources of variability.

Comparing their relative magnitudes, there is variability at both classroom
and school levels, with almost twice as much variability among classrooms
within a school as among schools themselves.

Correlation among THKS scores for classmates (or children within same
classroom within same school) is approximately 0.061 (or 0.039+0.065

0.039+0.06+1.602).

Correlation among THKS scores for children from different classrooms
within same school is approximately 0.023 (or 0.039

0.039+0.06+1.602).
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Next, consider REML estimates of fixed effects for the interventions.

When compared to their SEs, indicate that neither mass-media intervention
(TV) nor its interaction with social-resistance classroom curriculum (CC)
have an impact on adjusted changes in THKS scores from baseline.

There is a significant effect of the social-resistance classroom curriculum,
with children assigned to the social-resistance curriculum showing increased
knowledge about tobacco and health.

The estimate of the main effect of CC, in the model that excludes the CC
× TV interaction, is 0.47 (SE = 0.113, p < 0.0001).
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The intra-cluster correlations at both the school and classroom levels are
relatively small.

It is very tempting to regard this as an indication that the clustering in
these data is inconsequential.

However, such a conclusion would be erroneous.

Although intra-cluster correlations are relatively small, they have an impact
on inferences concerning the effects of the intervention conditions.

To illustrate this, consider analysis that ignores clustering in the data:

Yijk = β1 + β2Pre-THKS + β3CC + β4TV + β5CC× TV + eijk,
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The results of fitting this model to the THKS scores are presented in Table
63 and the estimates of the fixed effects are similar to those reported in
Table 61.

However, SEs (assuming no clustering) are misleadingly small for
intervention effects and lead to substantively different conclusions about
effects of intervention conditions.

This highlights an important lesson: the impact of clustering depends on
both the magnitude of the intra-cluster correlation and the cluster size.

For the data from the TVSFP, the cluster sizes vary from 1–13 classrooms
within a school and from 2–28 students within a classroom.

With relatively large cluster sizes, even very modest intra-cluster correlation
can have a discernible impact on inferences.
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Table 63: Fixed effects estimates from analysis that ignores clustering in
the THKS scores.

Parameter Estimate SE Z

Intercept 1.661 0.0844 19.69
Pre-Intervention THKS 0.325 0.0258 12.58
CC 0.641 0.0921 6.95
TV 0.199 0.0900 2.21
CC × TV −0.322 0.1302 −2.47
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Generalizations

The multilevel model can be generalized to an arbitrary number of levels.

Generalized linear mixed effects models (GLMMs) have also been developed
for the analysis of binary outcomes and counts in the multilevel setting (see
FLW, Chapter 17).

Cautionary Remarks
Multilevel modeling can be difficult:

- A covariate can operate at different levels
- It is not always clear how to combine covariates within a single model
- Though hierarchical linear models with random effects are appealing,

the extension to generalized linear models raises difficult problems of
interpretation.

- As discussed earlier, marginal models and mixed-effects models can give
quite different results in the non-linear setting
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Summary

Despite certain complexities, multilevel models are now widely used.

In both designed experiments and studies of effects of family/community
factors on health, multilevel models provide a usually effective approach to
data analysis that accounts for correlations induced by clustering.

Multilevel models are, in one sense, no different than longitudinal models.

Unlike logistic regression and survival analysis, where concept of regression
analysis can be applied quite robustly and with few choices, longitudinal
and multilevel analysis require more careful thought about the choice and
meaning of models.

This is both their challenge and their reward.
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