Analysis of Response Profiles of data on Blood Lead Levels

Treatment of Lead Exposed Children (TLC) Trial

 

The Mixed Procedure

 

Model Information

Data Set

WORK.TLC

Dependent Variable

y

Covariance Structure

Unstructured

Subject Effect

id

Estimation Method

REML

Residual Variance Method

None

Fixed Effects SE Method

Model-Based

Degrees of Freedom Method

Between-Within

 

Class Level Information

Class

Levels

Values

id

100

not printed

group

2

P A

time

4

0 1 4 6

 

Dimensions

Covariance Parameters

10

Columns in X

15

Columns in Z

0

Subjects

100

Max Obs Per Subject

4

Observations Used

400

Observations Not Used

0

Total Observations

400

 

Iteration History

Iteration

Evaluations

-2 Res Log Like

Criterion

0

1

2626.25517748

 

1

1

2416.07594087

0.00000000

 

Convergence criteria met.

 

Estimated R Matrix for id 1

Row

Col1

Col2

Col3

Col4

1

25.2257

19.1074

19.6995

22.2016

2

19.1074

44.3458

35.5351

29.6750

3

19.6995

35.5351

47.3778

30.6205

4

22.2016

29.6750

30.6205

58.6510

 

 

Fit Statistics

-2 Res Log Likelihood

2416.1

AIC (smaller is better)

2436.1

AICC (smaller is better)

2436.7

BIC (smaller is better)

2462.1

 

 

Type 3 Tests of Fixed Effects

Effect

Num DF

Den DF

Chi-Square

F Value

Pr > ChiSq

Pr > F

group

1

98

25.43

25.43

<.0001

<.0001

Time

3

98

184.48

61.49

<.0001

<.0001

group*time

3

98

107.79

35.93

<.0001

<.0001

 

 

Note: In the “Solution for Fixed Effects” the default indicator variable coding is not the most natural for a categorical variable denoting the occasions of measurement; for the latter, the “first” level of the factor (the baseline measurement occasions) is a more natural reference group.

 

Similarly, the placebo group might be regarded as a more natural reference group for treatment comparisons.

 

 

Solution for Fixed Effects

Effect

group

time

Estimate

Standard Error

DF

t Value

Pr > |t|

Intercept

 

 

20.7620

1.0831

98

19.17

<.0001

Group

P

 

2.8840

1.5317

98

1.88

0.0627

Group

A

 

0

.

.

.

.

Time

 

0

5.7780

0.8885

98

6.50

<.0001

Time

 

1

-7.2400

0.9343

98

-7.75

<.0001

Time

 

4

-5.2480

0.9464

98

-5.54

<.0001

Time

 

6

0

.

.

.

.

Group*time

P

0

-3.1520

1.2566

98

-2.51

0.0138

Group*time

P

1

8.2540

1.3213

98

6.25

<.0001

Group*time

P

4

5.6720

1.3385

98

4.24

<.0001

Group*time

P

6

0

.

.

.

.

Group*time

A

0

0

.

.

.

.

Group*time

A

1

0

.

.

.

.

Group*time

A

4

0

.

.

.

.

Group*time

A

6

0

.

.

.

.

 

 

 

The default coding can be changed with the inclusion of the ORDER=option in the PROC MIXED statement. For example, the ORDER=DATA option forces the levels of all variables included in the CLASS statement to be sorted by their order of appearance in the input data set. Therefore, by previously sorting the data set in descending order of a categorical variable denoting the occasions of measurement, a more natural reference group coding is obtained for that variable (with the lowest, rather than the highest, level of the categorical variable for time used as the reference). This produces the following output for the “Solution for Fixed Effects” :

 

 

 

Solution for Fixed Effects

Effect

group

time

Estimate

Standard Error

DF

t Value

Pr > |t|

Intercept

 

 

26.2720

0.7103

98

36.99

<.0001

group

A

 

0.2680

1.0045

98

0.27

0.7902

group

P

 

0

.

.

.

.

time

 

6

-2.6260

0.8885

98

-2.96

0.0039

time

 

4

-2.2020

0.8149

98

-2.70

0.0081

time

 

1

-1.6120

0.7919

98

-2.04

0.0445

time

 

0

0

.

.

.

.

group*time

A

6

-3.1520

1.2566

98

-2.51

0.0138

group*time

A

4

-8.8240

1.1525

98

-7.66

<.0001

group*time

A

1

-11.4060

1.1199

98

-10.18

<.0001

group*time

A

0

0

.

.

.

.

group*time

P

6

0

.

.

.

.

group*time

P

4

0

.

.

.

.

group*time

P

1

0

.

.

.

.

group*time

P

0

0

.

.

.

.

 

 

Note: one unappealing consequence of circumventing the default coding of time in this way is that the estimates of the covariance matrix are printed in reverse (or descending) order of time. To avoid potential confusion when extracting the estimates of the covariance matrix, it is advisable to re-run the analysis without the ORDER=DATA option.