Chapter 7, Section 7.6
Unstructured Covariance
(REML Estimation)
data exercise;
infile 'exercise.dat';
input id group y0 y2 y4 y6 y8 y10 y12;
y=y0; day=0; output;
y=y4; day=4; output;
y=y6; day=6; output;
y=y8; day=8; output;
y=y12; day=12; output;
drop y0 y2 y4 y6 y8 y10 y12;
data exercise;
set exercise;
***************************************************;
* Create additional
copy of time variable *;
***************************************************;
time=day;
title1 Unstructure covariance for strength data;
title2
Exercise Therapy Trial;
proc mixed method=reml noclprint=10;
class id group time;
model y = group time group*time / s
chisq;
repeated time / type=un
subject=id r rcorr;
run;
<Selected
Output>
Autoregressive Covariance
(REML Estimation)
title1 Autoregressive covariance for strength data;
title2
Exercise Therapy Trial;
proc mixed noclprint=10;
class id group time;
model y = group time group*time / s
chisq;
repeated time /
type=ar(1) subject=id r rcorr;
run;
<Selected
Output>
Exponential Covariance (REML
Estimation)
title1 Exponential covariance for strength data;
title2
Exercise Therapy Trial;
proc mixed noclprint=10;
class id group time;
model y = group time group*time / s
chisq;
repeated time / type=sp(exp)(day) subject=id
r rcorr;
run;
<Selected
Output>