Chapter 6, Section 6.5

 

 

Vlagtwedde-Vlaardingen Study

 

 

Linear Trend Model (REML Estimation)

 

 

data smoke;

     infile 'smoking.dat';

     input id smoker time fev1;

 

***************************************************;

*   Create additional copy of time variable   *;

***************************************************;

t=time;

 

title1 Linear Trend Model for FEV1 data (REML);
title2 Vlagtwedde-Vlaardingen Study;

proc mixed noclprint=10;
     class id t;
     model fev1 = smoker time smoker*time / s chisq;
     repeated t / type=un subject=id r=12;

 

run;

<Selected Output>

 

 

Linear Trend Model (ML Estimation)

 

title1 Linear Trend Model for FEV1 data (ML);
title2 Vlagtwedde-Vlaardingen Study;

proc mixed method=ml noclprint=12;
     class id t;
     model fev1 = smoker time smoker*time / s chisq;
     repeated t / type=un subject=id r=12;

 

run;

<Selected Output>

 

 

Quadratic Trend Model (ML Estimation)

 

title1 Quadratic Trend Model for FEV1 data (ML);
title2 Vlagtwedde-Vlaardingen Study;

proc mixed method=ml noclprint=12;
     class id t;
     model fev1 = smoker time time*time smoker*time smoker*time*time / s chisq;
     repeated t / type=un subject=id r=12;

 

run;

<Selected Output>

 

 

 

Treatment of Lead Exposed Children (TLC) Trial

 

Piecewise Linear Model (REML Estimation)

 

 

data tlc;                                                          
     infile 'tlc.dat';
     input id group $ lead0 lead1 lead4 lead6;
     y=lead0; time=0; output;
     y=lead1; time=1; output;
     y=lead4; time=4; output;
     y=lead6; time=6; output;
     drop lead0 lead1 lead4 lead6;


data tlc;
     set tlc;
 

***************************************************;

*   Create additional copy of time variable   *;

***************************************************;

t=time;
 

time_1=max(time - 1, 0);
 

succimer=(group='A');


title1 Piecewise Linear Model with knot at Time = 1;
title2 Treatment of Lead Exposed Children (TLC) Trial;

proc mixed noclprint=10;
     class id t;
     model y = time time_1 succimer*time succimer*time_1 / s chisq;
     repeated t / type=un subject=id r;
 

run;

<Selected Output>