Chapter 13, Section 13.5
Marginal Logistic Regression
Model
data ecg;
infile
'ecg.dat';
input id seq period
trt y;
title1 Marginal Logistic Regression Model;
title2 Crossover
Trial on Cerebrovascular Deficiency;
proc genmod descending;
class id;
model y = trt period / d=bin;
repeated subject=id / logor=fullclust;
run;
<Selected
Output>
Mixed Effects Logistic
Regression Model (Random Intercept)
***********************************************************************************;
* Use GEE estimates as initial estimates for
regression parameters *;
***********************************************************************************;
title1 Mixed Effects Logistic Regression Model (Random
Intercept);
title2 Crossover Trial on Cerebrovascular Deficiency;
proc
nlmixed qpoints=100;
parms
beta1=-1.2433 beta2=.5689 beta3=.2951
g11=0 to 30 by 1;
eta=beta1 + beta2*trt + beta3*period + b;
p=exp(eta)/(1 + exp(eta));
model y ~ binary(p);
random b ~ normal(0,g11)
subject=id;
run;
<Selected
Output>