
INTRODUCTION

• Longitudinal Studies: Studies in which individuals are measured
repeatedly through time.

• This course will cover the design, analysis and interpretation of
longitudinal studies.

• The course will emphasize model development, use of statistical
software, and interpretation of results.

• The theoretical basis for results will be mentioned but not developed.

• No calculus or matrix algebra is assumed.
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FEATURES OF LONGITUDINAL DATA

• Defining feature: repeated observations on individuals, allowing the
direct study of change.

• Note that the measurements are commensurate, i.e. the same variable
is measured repeatedly.

• Longitudinal data require sophisticated statistical techniques because
the repeated observations are usually (positively) correlated.

• Sequential nature of the measures implies that certain types of
correlation structures are likely to arise.

• Correlation must be accounted for to obtain valid inferences.
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EXAMPLE

Auranofin Therapy for Rheumatoid Arthritis (Bombardier et al, Am. J.
Med, 1986).

Randomized, placebo-controlled study of auranofin treatment of
rheumatoid arthritis.

Outcome variables: More than 20 measures of pain, function, global
health, utility.

Measurement schedule: Two baseline measurements and monthly
measurements for six months.

Sample size:

303 patients with classic/definite rheumatoid arthritis

154 patients on auranofin
149 on placebo
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EXAMPLE

Erythropoietin treatment of pruritus in hemodialysis patients (De Marchi
et al, NEJM, 1992).

Randomized, placebo-controlled crossover study.

Outcome variables: Severity of pruritus, plasma histamine level.

Treatment and measurement schedule: 5 weeks of placebo and 5 weeks of
erythropoietin in random order. Weekly pruritus score.

Sample size:

10 patients with pruritus
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EXAMPLE

Six Cities Study: Respiratory Illness in Children
(Laird, Beck and Ware, 1984)

A non-randomized longitudinal study of the health effects of air pollution.

Subset of data from one of the participating cities: Steubenville, Ohio

Outcome variable: Binary indicator of respiratory illness in child

Measurement schedule: Four annual measurements at ages 7, 8, 9, and 10.

Interested in the influence of maternal smoking on children’s respiratory
illness.

Sample size:

537 children

7



8



EXAMPLE
Clinical trial of anti-epileptic drug Progabide (Thall and Vail, Biometrics,
1990)

Randomized, placebo-controlled study of treatment of epileptic seizures
with Progabide.

Patients were randomized to treatment with Progabide, or to placebo in
addition to standard chemotherapy.

Outcome variable: Count of number of seizures

Measurement schedule: Baseline measurements during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Sample size: 59 epileptics

28 patients on placebo
31 patients on progabide
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Some features of the studies:

Repeated measurements of study participants.

Two general types of design:

Parallel Design:

Groups of subjects defined by treatment or exposure category are followed
over time. The main objective is to compare the trajectories of outcome
variables between groups.

Crossover Design:

Subjects are exposed to multiple treatments or exposures. The objective
is to compare the responses of the same subjects to different conditions.
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GENERAL DATA STRUCTURE

yij = jth observation on the ith subject

Observations

Time
1 2 3 . . . p

Subjects
1 y11 y12 y13 . . . y1p

2 y21 y22 y23 . . . y2p

. . . . . . . .

. . . . . . . .

. . . . . . . .
n yn1 yn2 yn3 . . . ynp
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TWO SPECIAL CASES

Two-Groups Parallel Design:

Time
1 2 3 . . . p

Subjects
Tx 1

1 y11 y12 y13 . . . y1p

2 y21 y22 y23 . . . y2p

. . . . . . . .

. . . . . . . .

. . . . . . . .
m ym1 ym2 ym3 . . . ymp

Tx 2
m+ 1 ym+1,1 ym+1,2 ym+1,3 . . . ym+1,p

m+ 2 ym+2,1 ym+2,2 ym+2,3 . . . ym+2,p

. . . . . . . .

. . . . . . . .

. . . . . . . .
n yn1 yn2 yn3 . . . ynp
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Crossover Design:

Treatment
Ctrl T1 T2

Subjects
1 y11 y12 y13

2 y21 y22 y23

. . . .

. . . .

. . . .
n yn1 yn2 yn3
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In longitudinal studies the outcome variable can be:

- continuous

- binary

- count

The data set can be incomplete.

Subjects may be measured at different occasions.

In this course we will develop a set of statistical tools that can handle all
of these cases.

Emphasis on concepts, model building, software, and interpretation.
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ORGANIZATION OF COURSE

1) Repeated Measures ANOVA
Review of One-way ANOVA
Repeated Measures ANOVA

Outcome: Continuous
Balanced and complete data
Software: PROC GLM/MIXED in SAS

2) General Linear Model for Longitudinal Data
More general approach for fitting linear models to unbalanced,
incomplete longitudinal data.

Outcome: Continuous
Unbalanced and incomplete data
Class of models: Linear models
Software: PROC MIXED in SAS
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ORGANIZATION OF COURSE (cont.)

3) Nonlinear Models for Longitudinal Data
Generalizations and extensions to allow fitting of nonlinear
models to longitudinal data.

Outcome: Continuous, binary, count
Class of models: Generalized Linear Models (e.g. logistic regression)
Software: PROC GENMOD/NLMIXED in SAS

4) Multilevel Models
Methods for fitting mixed linear models to multilevel data

Outcomes: Continuous
Unbalanced two, three, and higher-level data
Software: PROC MIXED in SAS, using the

RANDOM STATEMENT
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BACKGROUND ASSUMED
1) Samples and populations

2) Sample and population values

Population values: parameters (Greek)
Sample values: estimates

3) Variables:

Y : Outcome, response, dependent variable
X: Covariates, independent variables

4) Regression Models

Yi = β0 + β1X1i + β2X2i + ei

5) Inference

Estimation, testing, and confidence intervals

6) Multiple linear regression
Multiple logistic regression
ANOVA
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ANALYSIS OF VARIANCE

ONE-WAY ANOVA: Describes how the mean of a continuous
dependent variable depends on a nominal (categorical, class) independent
variable.

Objective: To estimate and test hypotheses about the population group
means, µ1, µ2, . . . , µk.

H0 : µ1 = µ2 = . . . = µk

HA : µi’s not all equal

Note: Some of the µi’s could be equal under HA
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Analyzing samples from each of the k populations, we ask:

• Are there any differences in the k population means?

• If so, which of the means differ?

=⇒ One-Way Analysis of Variance (ANOVA)
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Data Structure:

Pop1 Pop2 . . . Popk
y11 y21 . . . yk1

y12 y22 . . . yk2 Samples
... ... ...

y1n1 y2n2 . . . yknk

yij = value of jth observation in ith sample
i = 1, . . . , k (number of samples)
j = 1, . . . , ni (# obs. in ith sample)

NB: Number of observations in each sample is not necessarily the same
(i.e., the ni can differ)
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Terminology

Factor: Any nominal (or categorical) variable, e.g.,
treatment (trt1, . . . , trtk)

Level: The categories of a factor are called levels,
e.g., trt2 is one particular level of the
“treatment” factor

Effects: Differences in the mean of the response
variable among different levels of a factor,
e.g., the “effect” of “treatment” are the
extent to which the mean response differs
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Goal of One-Way ANOVA:

Assess whether a factor has a significant “effect” on a continuous outcome
variable (Y )

Two complementary ways to consider this:

1. Does the mean of Y differ among levels of a factor?

2. Do differences among levels of a factor explain some of the variation in
Y ?

ANOVA: Analyzing variances? Although interested in comparing means,
we do so by comparing variances.
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Assumptions of One-Way ANOVA

1. Independence of observations:

Yij are independent random variables for all i, j.

=⇒ independent random samples from k populations

2. Yij have Normal distn with mean µi

3. Common variance for all populations, σ2
1 = . . . = σ2

k = σ2

Recall: the Normal probability density of Yij is:

f (Yij) =
(
2πσ2

)−1/2
exp

[
− (Yij − µi)2

/2σ2
]
.

 

 

The normal distribution

N(µ, σ)

µ
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Model:

Yij = µ+ αi + εij

grand
mean
over all
groups

+
effect of
being in
ith group +

unexplained
random error
of jth obs’n
in ith group

Under our assumptions
Yij

d∼ N(µi, σ2)

• µi = µ+ αi

• εij
d∼ N(0, σ2)
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Constraint:

• Note that we have the following parameters:

µ, α1, α2, . . . , αk

• However, there are only k population means to estimate

• We have to “constrain” α’s in some way

One common constraint is:

αk = 0

 µ is the mean of pop k
and αi (i 6= k) measures
difference from pop k
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Hypothesis Testing

Test: H0 : µ1 = µ2 = . . . = µk
HA : not all µi equal

Basic Idea:

• quantify variability between sample means

−→ Between groups variability

• quantify error variability or variability of observations in the same
group

−→ Error or within groups variability

Between >> Within (Error) =⇒ µi’s vary
=⇒ reject H0

Otherwise cannot reject H0.
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Summary Statistics:

Group

1 2 . . . k

y11 y21 . . . yk1

... ... . . . ...

y1n1 y2n2 . . . yknk

Means ȳ1• ȳ2• ȳk•
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Notation:

N =
k∑
i=1

ni = total number of observations

yi• = 1
ni

ni∑
j=1

yij = ith sample mean

(sometimes written as yi)

y•• = 1
N

k∑
i=1

ni∑
j=1

yij =
sample mean
of all observations
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Total Variability in Y ’s measured by sum of squares

SST =
k∑
i=1

ni∑
j=1

(yij − y••)
2

Using (yij − y••) = (yij − yi•) + (yi• − y••),We obtain

SST =
k∑
i=1

ni∑
j=1

(yi• − y••)2 +
k∑
i=1

ni∑
j=1

(yij − yi•)2

=
k∑
i=1

ni(yi• − y••)2 +
k∑
i=1

ni∑
j=1

(yij − yi•)2

= SSB + SSW

Total
Variation =

Between
Groups
Variation

+
Within
Groups
Variation
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ANOVA Table

The ANOVA table provides a summary of these sources of variation

Source SS df MS F
Between
Groups SSB k − 1 MSB MSB

MSE

Within
Groups

SSW
(=SSE) N − k MSE

Total SST

MSB = SSB
k − 1

MSE = SSE
N-k = SSW

N-k

32



Sources of Variability

Between groups variability

MSB =
1

k − 1

k∑
i=1

ni (yi• − y••)
2

Analogous to the sample variance of the group means.

Within groups variability

MSW = MSE = 1
N−k

k∑
i=1

ni∑
j=1

(yij − yi•)
2

= 1
N−k

k∑
i=1

(ni − 1)S2
i

where S2
i is the sample variance of the ith group.
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MSW represents:

• A weighted average of sample variances

• Average variability within the groups

Test Statistic: F = MSB/MSE
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Interpretation of F Test

The F test is the ratio of two variances.

The denominator

MSE =
k∑
i=1

ni∑
j=1

(yij − ȳi•)2
/n− k

represents the within-group mean square and has expected value

E (MSE) = σ2

(Note: E(·) can be thought of as denoting the average over all data sets
that might have arisen).
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The numerator

MSB =
k∑
i=1

ni (ȳi• − ȳ••)2
/ (k − 1)

is the between-group sum of squares. It has expected value

E (MSB) = σ2 +
k∑
i=1

ni (µi − µ̄)2
/ (k − 1)

where µ̄ =

k∑
i=1

niµi

k∑
i=1

ni

When H0 : µ1 = . . . = µk is true,

E (MSB) = σ2
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When H0 is not true,
E (MSB) > σ2

When H0 is true, F will take values close to 1. When H0 is not true, F
will tend to be large.

Null distribution of F ∼ Fk−1,N−k
=⇒ reject H0 : µ1 = . . . = µk if F > Fk−1,N−k,(1−α)

• This is a “global” test.

• It does not specify which µi’s differ.
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Example: Dosages of four cardiotoxic drugs at death
of infused guinea pigs

• Evaluating potencies of four cardiac treatments

• Observe dosage at which animals (guinea pigs) die for each treatment

• 10 guinea pigs per treatment (40 observations in all)

• Assess any differences in toxicity of four treatments

ie. differences in mean dosage required to kill animal

ȳ1 = 25.9, ȳ2 = 22.2, ȳ3 = 20.0, ȳ4 = 19.6
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ANOVA Table

Source df SS MS F
between 3 249.9 83.3 8.5
(drug)
within 36 350.9 9.7
Total 39 600.8

F = 83.3/9.7 = 8.5 (p < 0.001)

Estimated (common) standard deviation of the distribution of scores in
each group

=
√

9.7

= 3.11
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Estimation

A single mean:
µ̂i = ȳi

V ar (ȳi) = σ2/ni and σ̂2 = MSE

Thus, a 95% C.I. for µi is

ȳi ± tN−k, 0.975

√
MSE/ni
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Linear combinations of means:

Interest could focus on any of, e.g.,

µ1

µ1 − µ2

µ1 −
(
µ2+µ3+µ4

3

)
A unified estimation theory can be developed using the linear form

k∑
i=1

wiµi
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We estimate all such linear combinations using

k∑
i=1

wiµ̂i =
k∑
i=1

wiȳi

V ar

(
k∑
i=1

wiȳi

)
=

(
k∑
i=1

w2
i /ni

)
σ2

Same estimation theory applies for any weighted sum, e.g. for guinea pig
data:

µ̂1 − µ̂2 = ȳ1 − ȳ2 = 25.9− 22.2 = 3.7

with variance
(

1
10 + 1

10

)
σ2 = .2 ∗ 9.7 = 1.9
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A linear combination of means whose weights sum to 0 is called a contrast:

k∑
i=1

ciµi, with
k∑
i=1

ci = 0

Thus, the second and third examples above are contrasts, whereas the
first is not.
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Multiple Comparison Procedures

When the initial F test in an ANOVA is significant, we would like to
identify the specific pairs of means that differ (and contrasts that differ
from 0).

Example: Dosages of four cardiotoxic drugs at death of infused
guinea pigs.

ȳ1 = 25.9, ȳ2 = 22.2, ȳ3 = 20.0, ȳ4 = 19.6

Source df SS MS F
Drug 3 249.9 83.3 8.5
Error 36 350.9 9.7
(p < 0.001)

Which pairs of means differ?
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Method 1: Form a 95% C.I. for each contrast between groups. Declare a
difference if the C.I. does not include 0.

Problem: Many tests ⇒ high rate of false positive results. Increased
type 1 error rate.

Method 2: Bonferroni Adjustment

Determine Q, the number of contrasts to be tested. Test each at level
0.05/Q.

For example, with four groups there are Q = 6 possible pairwise
comparisons. A good method if we want to focus on a few contrasts. Very
conservative if Q is large.
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Method 3: Scheffe’s Method

To obtain simultaneous confidence intervals for all possible contrasts,

k∑
i=1

ciµi with
k∑
i=1

ci = 0

such that we are 95% confident that all of the C.I.’s cover the population
value:

k∑
i=1

ciȳi ± δ

√√√√MSE

(
k∑
i=1

c2i
ni

)

where δ2 = (k − 1)Fk−1, N−k, 1−α is a larger critical value.
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For pairwise comparisons, this reduces to

ȳi − ȳj ± δ

√
MSE

(
1
ni

+
1
nj

)
Example: Data on guinea pigs

δ =
√

3× 2.886 = 2.94

δ

√
MSE

(
1
ni

+ 1
nj

)
= 2.94

√
9.75

(
1
10 + 1

10

)
= 4.11

Hence the 95% C.I. for µ1 − µ4 is

25.9− 19.6± 4.1 = (2.2, 10.4)

Means that differ by more that 4.1 are significantly different.
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A graphical representation:

19.6 20.0 22.2 25.9

µ̂1 µ̂2 µ̂3 µ̂4

µ1 6= µ4 and µ1 6= µ3

For Scheffe’s Method, the ANOVA F test is significant if and only if at
least one contrast is significantly different from 0.
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SAS Syntax for One-Way ANOVA

data toxic;
infile ‘g:\shared\bio226\tox.dat’;
input drug y;

run;
proc glm data=toxic;

class drug;
model y=drug;
means drug / scheffe;
title ‘Scheffe Pairwise Comparisons’;

run;
proc glm data=toxic;

class drug;
model y=drug;
contrast ’Group 1 versus 2’ drug 1 -1 0 0;
title ‘Testing contrast of means’;

run;
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TWO WAY ANOVAs

Recall: One-Way ANOVA

• one factor with k different levels

• compare mean response between factor levels

In two- (or more) way ANOVA:

• ≥ 2 factors observed

• compare mean response across levels of factor 1, and factor 2, . . .
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Questions of Interest

1. Does mean outcome differ between the levels of factor 1?

2. Does mean outcome differ between the levels of factor 2?

3. Is there an “interaction” between factors 1 and 2, i.e., do differences
between the levels of factor 2 depend on the levels of factor 1? (or vice
versa)
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Relationship between ANOVA and Multiple Regression

Essentially identical, although often obscured by differences in
terminology.

The ANOVA model can be represented as a multiple regression model
with dummy (or indicator) variables.

=⇒ A multiple regression analysis with dummy-variable coded factors will
yield the same results as an ANOVA.

Dummy or Indicator Variable Coding:

Consider a factor with k levels:

Define X1 = 1 if subject belongs to level 1, and 0 otherwise;
and define X2, ..., Xk−1 similarly.

Note: Here the last level of the factor is selected as a “reference”.
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For example, for a subject at level 2:

X1 X2 X3 · · · Xk−1

0 1 0 · · · 0

This leads to a simple way of expressing the ANOVA model:

Yij = µij + εij

as
Yij = β0 + β1X1ij + β2X2ij + · · ·βk−1Xk−1,ij + εij

Note:

µ1 = β0 + β1

µ2 = β0 + β2
...

µk = β0
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The regression representation of ANOVA is more attractive because:

• It can handle balanced (i.e. equal cell sizes) and unbalanced data in a
seamless fashion.

• In addition to the usual ANOVA table summaries, it provides other
useful and interpretable results, e.g., estimates of effects and standard
errors.

• Generalizations of ANOVA to include continuous predictors (and
interactions among nominal and continuous predictors) are
straightforward.
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ANALYSIS OF REPEATED MEASURES

Longitudinal Studies: Designs in which the outcome variable is
measured repeatedly over time (for at least some study participants).

Repeated Measures: Older term applied to a special set of longitudinal
designs characterized by measurement at a common set of occasions,
usually in an experimental setting.

Initially, we will consider methods for analyzing longitudinal data
collected in two of the most important designs: single-group and parallel
group repeated-measures designs.

We will focus on linear models for continuous responses. Later in the
course we will discuss methods for categorical responses and count data.
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POTENTIAL SCIENTIFIC ADVANTAGES OF
LONGITUDINAL DESIGNS

1. They allow investigation of events that occur in time. Essential to the
study of normal growth and aging, and the effects of individual
characteristics, treatments, or environmental exposures on those
changes. Also essential to the study of the temporal pattern of response
to treatment.

2. Can study the order of events.

3. Permit more complete ascertainment of exposure histories in
epidemiologic studies.

4. Reduce unexplained variability in the response by using the subject as
his or her own control.
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THE SINGLE-GROUP REPEATED MEASURES
DESIGN

Each subject receives each of p treatments at p different occasions.

We assume initially that each subject receives the treatments in the same
order. Later, we will relax that assumption.

Listing each observation under the appropriate treatment columns:

TREATMENT

T1 T2 . . . Tp
Subject

1 Y11 Y12 . . . Y1p

2 Y21 Y22 . . . Y2p

.

.

.
n Yn1 Yn2 . . . Ynp
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If observations satisfied the assumptions of one-way ANOVA, we could
order them from 1 to np in a vector with elements Yi, and write the model
as

Yi = β0 + β1Xi1 + . . .+ βp−1Xi, p−1 + ei

= β0 +
p−1∑
j=1

βjXij + ei

where
Xij = 1, if observation i was obtained

while receiving treatment j;

0, otherwise.

However, this model needs to be modified to account for the statistical
dependence among repeated observations obtained on the same subject.
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EXAMPLE: PLACEBO-CONTROLLED STUDY OF
TWO ANTIHYPERTENSIVE TREATMENTS

Subject Baseline Placebo Trt A Trt B
(Trt 0) (Trt 1) (Trt 2) (Trt 3)

01 113 108 98 103
02 108 110 96 104
03 110 106 110 107
04 99 98 78 88
05 114 114 112 105
06 109 103 88 97
07 113 110 106 103
08 112 108 99 108
09 121 111 96 115
10 98 103 98 107
11 107 104 98 100
12 123 117 97 103
13 112 109 108 114
14 96 94 99 97
15 108 106 101 101
16 111 99 102 87
17 124 130 121 124
18 113 119 101 114
19 106 99 89 90
20 99 99 94 85
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Denote the population means at the p occasions by µ1, µ2, . . . , µp.

Then the null hypothesis of interest is

H0 : µ1 = µ2 . . . = µp

How can we test this hypothesis?

We could choose pairs of occasions and perform a series of paired t tests
⇒ p (p− 1) /2 tests.

This approach allows only pairwise comparisons.

Instead, we need to address the problem of correlation among repeated
measures and extend the one-way ANOVA model.
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DEPENDENCE AND CORRELATION
INDEPENDENCE

Two variables, X and Y , are said to be independent if the conditional
distribution of Y given X does not depend on X.

Example: Blood pressure would be independent of age if the distribution
of blood pressures were the same for every age group.

CORRELATION

Two variables, Y and Z, are uncorrelated if

E [(Y − µY ) (Z − µZ)] = 0

Note: Independent variables are uncorrelated, but variables can be
uncorrelated without being independent. Independence is a stronger
condition.
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CORRELATED OBSERVATIONS
Two variables, Y and Z, are correlated if

E [(Y − µY ) (Z − µZ)] 6= 0

The quantity, E [(Y − µY ) (Z − µZ)], is called the covariance. Notice that
the covariance of a variable with itself is the variance.

Covariance can take any positive or negative value and its value depends
on the units of the variables. To make it independent of units, we divide
by the standard deviations of the two variables:

Corr (Y, Z) = E [(Y − µY ) (Z − µZ)] /σY σZ

Correlations must lie between -1 and 1.

Repeated measures obtained from the same person are usually positively
correlated.
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Given vectors of observations (Yi1, Yi2, . . . , Yip) we define the
covariance matrix as the following array of variances and covariances:

Cov


Yi1
Yi2
·
·
Yip

 =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

· · · · · ·
· · · · · ·
σp1 σp2 · · · σpp



where Cov (Yir, Yis) = σrs

We can use SAS to calculate the sample covariance matrix for the
diastolic blood pressure measurements as follows.
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SAS CODE

data dbp;
infile ‘g:\shared\bio226\dbp.dat’;
input id y0 y1 y2 y3;

run;

proc sort data = dbp;
by id;

run;

title “Listing of the Raw Data”;
proc print data = dbp;
run;

title “Means, Covariances, and Correlations”;
proc corr data = dbp cov;

var y0 - - y3;
run;
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Listing of the Raw Data
OBS ID Y0 Y1 Y2 Y3

1 1 113 108 98 103
2 2 108 110 96 104
3 3 110 106 110 107
4 4 99 98 78 88
5 5 114 114 112 105
6 6 109 103 88 97
7 7 113 110 106 103
8 8 112 108 99 108
9 9 121 111 96 115

10 10 98 103 98 107
11 11 107 104 98 100
12 12 123 117 97 103
13 13 112 109 108 114
14 14 96 94 99 97
15 15 108 106 101 101
16 16 111 99 102 87
17 17 124 130 121 124
18 18 113 119 101 114
19 19 106 99 89 90
20 20 99 99 94 85
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Means, Covariances, and Correlations

Correlation Analysis

4 Variables: Y0 Y1 Y2 Y3

Covariance Matrix DF = 19
Y0 Y1 Y2 Y3

Y0 60.69 54.18 36.96 49.97
Y1 54.18 70.77 49.32 69.15
Y2 36.96 49.32 85.63 61.39
Y3 49.97 69.15 61.39 102.36

Simple Statistics
Variable N Mean Std Dev

Y0 20 109.8000 7.7907
Y1 20 107.3500 8.4122
Y2 20 99.5500 9.2536
Y3 20 102.6000 10.1172
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Pearson Correlation Coefficients, N = 20
Prob > |r| under H0: Rho = 0

Y0 Y1 Y2 Y3
Y0 1.0000 0.8266 0.5126 0.6339

0.0 0.0001 0.0208 0.0027

Y1 0.8266 1.0000 0.6336 0.8124
0.0001 0.0 0.0027 0.0001

Y2 0.5126 0.6336 1.0000 0.6557
0.0208 0.0027 0.0 0.0017

Y3 0.6339 0.8124 0.6557 1.0000
0.0027 0.0001 0.0017 0.0

Thus, the assumption of independence is inappropriate.
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One approach to analyzing repeated measures data is to consider
extensions of the one-way ANOVA model that account for the covariance.

That is, rather than assume that repeated observations of the same
subject are independent, allow the repeated measurements to have an
unknown covariance structure.

To do this, we can use the SAS procedure, PROC MIXED, an extension
of PROC GLM which allows clusters of correlated observations.

We will illustrate the use of PROC MIXED using the data from the
placebo-controlled study of two antihypertensive treatments; later we will
consider the statistical basis for the analysis.

Note: PROC MIXED requires the data to be in a univariate form. Often
it will be necessary to transform the data from a “multivariate mode” to a
“univariate mode”.
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SAS CODE

data dbp;
infile ‘g:\shared\bio226\dbp.dat’;
input id y0 y1 y2 y3;

y=y0; trt=0; output;
y=y1; trt=1; output;
y=y2; trt=2; output;
y=y3; trt=3; output;

drop y0-y3;
run;

proc mixed data=dbp covtest;
class id trt;
model y = trt /s chisq;
repeated /type=un subject=id r;
contrast ‘T2 - T1’

trt 0 -1 1 0 / chisq;
run;

71



Univariate Form of DBP Data (1st 5 subjects)
OBS ID Y trt

1 1 113 0
2 1 108 1
3 1 98 2
4 1 103 3
5 2 108 0
6 2 110 1
7 2 96 2
8 2 104 3
9 3 110 0

10 3 106 1
11 3 110 2
12 3 107 3
13 4 99 0
14 4 98 1
15 4 78 2
16 4 88 3
17 5 114 0
18 5 114 1
19 5 112 2
20 5 105 3
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SELECTED OUTPUT FROM PROC MIXED

Covariance Parameter Estimates

Standard Z
Cov Parm Estimate Error Value Pr > |Z|

UN(1,1) 60.6947 19.6920 3.08 0.0010

UN(2,1) 54.1789 19.5077 2.78 0.0055

UN(2,2) 70.7658 22.9595 3.08 0.0010

UN(3,1) 36.9579 18.5857 1.99 0.0468

UN(3,2) 49.3237 21.1417 2.33 0.0196

UN(3,3) 85.6289 27.7817 3.08 0.0010

UN(4,1) 49.9684 21.4101 2.33 0.0196

UN(4,2) 69.1474 25.1572 2.75 0.0060

UN(4,3) 61.3895 25.6838 2.39 0.0168

UN(4,4) 102.36 33.2093 3.08 0.0010
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Estimated R Matrix for id 1

Row COL1 COL2 COL3 COL4

1 60.6947 54.1789 36.9579 49.9684

2 54.1789 70.7658 49.3237 69.1474

3 36.9579 49.3237 85.6289 61.3895

4 49.9684 69.1474 61.3895 102.36

Fit Statistics

-2 Res Log Likelihood 504.8

AIC (smaller is better) 524.8

AICC (smaller is better) 528.2

BIC (smaller is better) 534.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > Chi Sq

9 55.79 <.0001
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Solution for Fixed Effects

Standard
Effect trt Estimate Error DF t Value Pr > |t|

Intercept 102.60 2.2623 19 45.35 0.0001
trt 0 7.2000 1.7765 19 4.05 0.0007
trt 1 4.7500 1.3196 19 3.60 0.0019
trt 2 -3.050 1.8057 19 -1.69 0.1075
trt 3 0.000 . . . .

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF Chi-Square Pr > ChiSq

trt 3 19 32.87 < .0001

Contrasts
Num Den

Label DF DF Chi-Square Pr > ChiSq

T2 - T1 1 19 21.07 < .0001
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Covariance Structure

When we estimate the covariance matrix without making any particular
assumption about the covariance structure, we say that we are using an
unrestricted or unstructured covariance matrix.

As we shall see later, it is sometimes advantageous to model the
covariance structure more parsimoniously.

How important is it to take account of the correlation among repeated
measures?

We can address that question by re-analyzing the diastolic blood pressure
data under the assumption of independence and comparing the results to
those provided by PROC MIXED.
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data dbp;
infile ‘g:\shared\bio226\dbp.dat’;
input id y0 y1 y2 y3;
y=y0; trt=0; t=0; output;
y=y1; trt=1; t=1; output;
y=y2; trt=2; t=2; output;
y=y3; trt=3; t=3; output;
drop y0-y3;

run;

proc glm data=dbp;
class trt;
model y=trt/solution;
estimate ‘T2 - T1’

trt 0 -1 1 0;
run;

proc mixed data=dbp noclprint;
class id trt t;
model y=trt/s chisq;
repeated t/type=un subject=id;
estimate ‘T2 - T1’

trt 0 -1 1 0;
run;
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RESULTS USING PROC GLM
Dependent Variable: Y

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 1278.05 426.02 5.33 0.0022
Error 76 6069.50 79.86
Total 79 7347.55

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 102.60 2.00 51.34 0.0001
trt 0 7.20 2.83 2.55 0.0129
trt 1 4.75 2.83 1.68 0.0969
trt 2 -3.05 2.83 -1.08 0.2839
trt 3 0.00 . . .

Standard
Parameter Estimate Error t Value Pr > |t|
T2-T1 -7.80 2.83 -2.76 0.0072

78



RESULTS USING PROC MIXED
Solution for Fixed Effects

Standard
Effect trt Estimate Error DF t Value Pr > |t|

Intercept 102.60 2.2623 19 45.35 < .0001
trt 0 7.2000 1.7765 19 4.05 0.0007
trt 1 4.7500 1.3196 19 3.60 0.0019
trt 2 -3.0500 1.8057 19 -1.69 0.1075
trt 3 0 . . . .

Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square Pr > ChiSq

TRT 3 19 32.87 < .0001

Estimates

Standard
Label Estimate Error t Value Pr > |t|

T2 - T1 -7.8000 1.6992 -4.59 0.0002
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Note that the estimates of the treatment contrast are the same in both
analyses, i.e., −7.8; but the standard errors are discernibly different.

The standard error yielded by PROC GLM, 2.83, is not valid since the
procedure has incorrectly assumed that all of the observations are
independent.

The standard error yielded by PROC MIXED, 1.70, is valid since the
procedure has accounted for the correlation among repeated measures in
the analysis.
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INTRODUCING A COVARIATE FOR TIME OF
MEASUREMENT

So far, we have assumed that every subject receives the treatments in the
same order.

More often, the order of administration is varied. Also, some observations
may be missing.

To allow for this possibility, the data set should always contain a variable
representing the time period of measurement (and defined as a class
variable when the number of occasions is fixed and shared).

Suppose that the data for the first subject is

Time Period Treatment Response

Baseline Baseline 113
Time 1 Trt A 108
Time 2 Trt B 98
Time 3 Placebo 103
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The analysis of these data requires the inclusion of a variable defining the
time period in which the treatment occurred.

Subj y Time Treatment

1 113 0 0
1 108 1 2
1 98 2 3
1 103 3 1

The expected value of the response is assumed to depend only on the
treatment received (or, in general, on the covariates).

The variances and covariances of the residuals are assumed to depend on
the time periods in which the observations were obtained.
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If an observation is missing, as in

Time Period Treatment Response

Baseline Baseline 113
Time 1 Trt A .
Time 2 Trt B 98
Time 3 Placebo 103

this can be expressed in the data by including a row with a missing value
indicator for y.

Subj y Time Treatment

1 113 0 0
1 . 1 2
1 98 2 3
1 103 3 1

Note: If the data set includes a class variable designating the time of
measurement, the data record with the missing response need not be
present in the data set.
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SAS CODE

proc mixed data=dbp noclprint;
class id trt time;
model y=trt/s chisq;
repeated time/type=un subject=id;
estimate ‘T2 - T1’

trt 0 -1 1 0;
run;

84



STATISTICAL BASIS FOR REPEATED
MEASURES ANALYSIS

In this lecture we introduce the general linear model for repeated
measurements and discuss inference based on maximum likelihood (ML).

Example:

To motivate the theory underlying the general linear model for repeated
measures consider the following example. A study was designed to
compare diastolic blood pressure levels of 20 subjects at baseline and after
two weeks of treatment on each of three treatment regimens: Placebo,
Treatment A, and Treatment B.

Initially, we want to test the null hypothesis that blood pressure levels are
unrelated to the treatments.
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EXAMPLE: PLACEBO-CONTROLLED STUDY OF
TWO ANTIHYPERTENSIVE TREATMENTS

Subject Baseline Placebo Trt A Trt B
(Trt 0) (Trt 1) (Trt 2) (Trt 3)

01 113 108 98 103
02 108 110 96 104
03 110 106 110 107
04 99 98 78 88
05 114 114 112 105
06 109 103 88 97
07 113 110 106 103
08 112 108 99 108
09 121 111 96 115
10 98 103 98 107
11 107 104 98 100
12 123 117 97 103
13 112 109 108 114
14 96 94 99 97
15 108 106 101 101
16 111 99 102 87
17 124 130 121 124
18 113 199 101 114
19 106 99 89 90
20 99 99 94 85
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THE GENERAL LINEAR MODEL FOR THE
SINGLE-GROUP REPEATED MEASURES

DESIGN

Let Yij, j = 1, . . . , p, be the sequence of observed measurements for the ith

subject, i = 1, . . . , n.

We assume initially that each subject is observed at the same time points
or under the same treatment conditions (balanced) and that no
observations are missing (complete data).

Each observation, Yij, has an associated set of covariates
Xij0, Xij1, Xij2, . . . , Xijk−1, where typically Xij0 = 1.
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The linear model for Yij can be written as

Yij = β0 + β1Xij1 + . . .+ βk−1Xijk−1 + eij

= Xijβ + eij

where

X′ij denotes the (k × 1) vector of covariates,

β = (β0, β1, β2, . . . , βk−1)′ is a (k × 1) vector of regression parameters.

With repeated measures, we expect the eij to be correlated within
individuals.

That is, Cov(eij, eij′) 6= 0 (j 6= j′).
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Assumptions:

1. The individuals represent a random sample from the population of
interest.

2. The elements of the vector of repeated measures Yi1, . . . , Yip, have a
Multivariate Normal (MVN) distribution, with means

µij = E(Yij) = Xijβ

3. Observations from different individuals are independent, while repeated
measurements of the same individual are not assumed to be
independent.

The variance-covariance matrix of the vector of observations, Yi1, . . . , Yip,
is denoted Σ and its elements are σjj′.
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Probability Models

The foundation of most statistical procedures is a probability model, i.e.,
probability distributions are used as models for the data.

A probability distribution describes the likelihood or relative frequency of
occurrence of particular values of the response (or dependent) variable.

Recall: The normal probability density for a single response variable, say
Yi, in the one-way ANOVA model is:

f (Yi) =
(
2πσ2

)−1/2
exp

[
− (Yi − µi)2

/2σ2
]

or
f (Yi) =

(
2πσ2

)−1/2
exp

[
− (Yi −Xiβ)2

/2σ2
]
.

Note that f (Yi) describes the probability or relative frequency of
occurrence of particular values of Yi.
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Specifically, f (Yi) describes a bell-shaped curve.

 

 

The normal distribution

N(µ, σ)

µ

Recall that the area under the curve between any two values represents
the probability of Yi taking a value within that range.
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Notable Features:

• f (Yi) is completely determined by (µi, σ2)

• f (Yi) depends to a very large extent on

(Yi − µi)2

σ2
= (Yi − µi)(σ2)−1(Yi − µi)

• The latter has interpretation in terms of a standardized distance of Yi
from µi, relative to the spread of values around µi
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With repeated measures we have a vector of response variables and must
consider joint probability models for the entire vector of responses.

A joint probability distribution describes the probability or relative
frequency with which the vector of responses takes on a particular set of
values.

The Multivariate Normal Distribution is an extension of the Normal
distribution for a single response to a vector of response.
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Multivariate Normal Distribution

For the repeated measures design, we need to introduce additional vector
and matrix notation to describe the multivariate normal density for the
set of observations on the ith subject.

Let Yi = (Yi1, Yi2, . . . , Yip)
′ denote the (p× 1) vector of responses, and

Xi =


1 Xi11 Xi12 . . . Xi1,k−1

1 Xi21 Xi22 . . . Xi2,k−1

. . . . . . .

. . . . . . .

1 Xip1 Xip2 . . . Xip,k−1


denote the (p× k) matrix of covariates.

Then, we assume Yi has a multivariate normal distribution with mean

E (Yi) = µi = Xiβ

and covariance matrix Σ.
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The multivariate normal probability density function has the following
representation:

f (Yi) = f (Yi1, Yi2, . . . , Yip) =

(2π)−p/2 |Σ|−1/2 exp
[
− (Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2

]
where |Σ| is the determinant of Σ (also known as the generalized
variance).
Note that f (Yi) describes the probability or relative frequency of
occurrence of a particular set of values of (Yi1, Yi2, . . . , Yip).
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Notable Features:

• f (Yi) is completely determined by µi = Xiβ and Σ

• f (Yi) depends to a very large extent on

(Yi −Xiβ)′Σ−1 (Yi −Xiβ)

• Although somewhat more complicated than in the univariate case, the
latter has interpretation in terms of a measure of distance

96



In the bivariate case, it can be shown that

(Yi − µi)
′Σ−1 (Yi − µi) =

(1− ρ2)−1

{
(Yi1 − µ1)2

σ11
+

(Yi2 − µ2)2

σ22
− 2ρ

(Yi1 − µ1)(Yi2 − µ2)
√
σ11σ22

}

where ρ = σ12√
σ11σ22

.

Note that this measure of distance

(i) down-weights deviations from the mean when the variance is large; this
make intuitive sense because when the variance is large the “information”
is somewhat poorer; and

(ii) modifies the distance depending on the magnitude of the correlation;
when there is strong correlation, knowing that Yi1 is “close” to µ1 also
tells us something about how close Yi2 is to µ2.
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MAXIMUM LIKELIHOOD AND GENERALIZED
LEAST SQUARES

Next we consider a framework for estimation of the unknown parameters,
β and Σ.

When full distributional assumptions have been made about the vector of
responses a standard approach is to use the method of maximum
likelihood (ML).

The main idea behind ML is really quite simple and conveyed by its
name: use as estimates of β and Σ the values that are most probable (or
“likely”) for the data that we have observed.

That is, choose values of β and Σ that maximize the probability of the
response variables evaluated at their observed values (or that best predict
the observed data).

The resulting values, β̂ and Σ̂ are called the maximum likelihood
estimates of β and Σ.
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Independent observations:

To obtain maximum likelihood estimates of β in the ordinary one-way
ANOVA model, we find the values of the regression parameters that
maximize the probability density function.

With independent observations, the joint density is simply the product of
the individual univariate normal densities for Yij.

Hence, we wish to maximize

f(Y ) =
(
2πσ2

)−np/2
exp

− n∑
i=1

p∑
j=1

(Yij −Xijβ)2
/2σ2

 ,
evaluated at the observed values of the data, with respect to the
regression parameters, β.

This is called maximizing the likelihood function.
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Note that maximizing the likelihood is equivalent to maximizing the
logarithm of the likelihood.

Hence, we can maximize

−
n∑
i=1

p∑
j=1

(Yij −Xijβ)2
/2σ2

by minimizing
n∑
i=1

p∑
j=1

(Yij −Xijβ)2
/2σ2

Note: This is equivalent to finding the least squares estimates of β, i.e.,
the values that minimize the sum of the squares of the residuals.
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The least squares solution can be written as

β̂ =

 n∑
i=1

p∑
j=1

(
X′ijXij

)−1
n∑
i=1

p∑
j=1

(
X′ijYij

)

This least squares estimate is the value that PROC GLM or any least
squares regression program will produce.

Next we consider how to extend these ideas to the setting of correlated
data.
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GENERALIZED LEAST SQUARES

To find the maximum likelihood estimate of β in the repeated measures
setting we first assume that Σ is known (later, we will relax this
unrealistic assumption).

Given that Yi = (Yi1, Yi2, . . . , Yip)
′ are assumed to have a multivariate

normal distribution, we must maximize the following log-likelihood

ln { (2π)−np/2 |Σ|−n/2

exp
[
−

n∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2
]
}

= −np2 ln (2π)− n
2 ln |Σ|

−
[
n∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2
]

or minimize
n∑
i=1

(Yi −Xiβ)′Σ−1 (Yi −Xiβ)
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The estimate of β that minimizes this expression is known as the
generalized least squares estimate and can be written as

β̂ =

[
n∑
i=1

(
X′iΣ

−1Xi

)]−1 n∑
i=1

(
X′iΣ

−1Yi

)

This is the estimate that PROC MIXED provides.

103



Properties of GLS:

1. For any choice of Σ, GLS estimate of β is unbiased; that is, E(β̂) = β.

2. Cov(β̂) =
[
n∑
i=1

(
X′iΣ

−1Xi

)]−1

3. Sampling Distribution of β̂:

β̂ ∼ N

β,[ n∑
i=1

(
X′iΣ

−1Xi

)]−1


4. If Σ = σ2I, GLS estimate reduces to the ordinary least squares
estimate.

5. The most efficient generalized least squares estimate is the one that
uses the true value of Σ.

104



Since we usually do not know Σ, we typically estimate it from the data.

In general, it is not possible to write down simple expressions for the ML
estimate of Σ. The ML estimate of Σ has to be found by using numerical
algorithms that maximize the likelihood.

Once the ML estimate of Σ has been obtained, we simply substitute the
estimate of Σ, say Σ̂, in the generalized least squares estimator to obtain
the ML estimate of β,

β̂ =

[
n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1 n∑
i=1

(
X′iΣ̂

−1
Yi

)

In large samples, the resulting estimator of β will have all the same
properties as when Σ is known.
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Statistical Inference

To test hypotheses about β we can make direct use of the ML estimate β̂
and its estimated covariance matrix,

[
n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1

.

Let L denote a matrix or vector of known weights (often representing
contrasts of interest) and suppose that it is of interest to test H0 : Lβ = 0.

Note. Though we usually signify row vectors by the transpose symbol, e.g,
L′, we assume here that L is a matrix whose rows represent different
linear combinations for a single linear combination, L is then a row vector.
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Example: Suppose β = (β0, β1, β2)′ and let L = (0, 0, 1), then H0 : Lβ = 0
is equivalent to H0 : β2 = 0.

Note: A natural estimate of Lβ is Lβ̂ and the covariance matrix of Lβ̂ is
given by LCov(β̂)L′.

Thus, the sampling distribution of Lβ̂ is:

Lβ̂ ∼ N
(
Lβ, LCov(β̂)L′

)
.
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Suppose that L is a single row vector.

Then LCov(β̂)L′ is a single value (scalar) and its square root provides an
estimate of the standard error for Lβ̂.

Thus an approximate 95% confidence interval is given by:

Lβ̂ ± 1.96
√
LCov(β̂)L′

Wald Test

In order to test H0 : Lβ = 0 versus HA : Lβ 6= 0, we can use the Wald
statistic

Z =
Lβ̂√

LCov(β̂)L′

and compare with a standard normal distribution.

108



Recall: If Z is a standard normal random variable, then Z2 has a χ2

distribution with 1 df. Thus, an identical test is to compare

W = (Lβ̂)(LCov(β̂)L′)−1(Lβ̂)

to a χ2 distribution with 1 df.

This approach readily generalizes to L having more than one row and this
allows simultaneous testing of more than one hypothesis.

Suppose that L has r rows, then a simultaneous test of the r contrasts is
given by

W = (Lβ̂)′(LCov(β̂)L′)−1(Lβ̂)

which has a χ2 distribution with r df.

This is how the “Tests of Fixed Effects” are constructed in PROC
MIXED.
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Likelihood Ratio Test

Suppose that we are interested in comparing two nested models, a “full”
model and a “reduced” model.

Aside:

Suppose that one model (the “reduced” model) is a special case of the
other (the “full” model). That is, the reduced model is simpler than the
full model, so that when the reduced model holds the full model must
necessarily hold. The reduced model is then said to be nested within the
full model.

We can compare two nested models by comparing their maximized
log-likelihoods, say l̂full and l̂red; the former is at least as large as the latter.

The larger the difference between l̂full and l̂red the stronger the evidence
that the reduced model is inadequate.
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A formal test is obtained by taking

2(l̂full − l̂red)

and comparing the statistic to a chi-squared distribution with degrees of
freedom equal to the difference between the number of parameters in the
full and reduced models.

Formally, this test is called the likelihood ratio test.

We can use likelihood ratio tests for hypotheses about models for the
mean and the covariance1.

1Later in the course, we will discuss some potential problems with the use of the likelihood ratio test for
comparing nested models for the covariance.
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RESIDUAL MAXIMUM LIKELIHOOD (REML)
ESTIMATION

Recall that the multivariate normal probability density has the following
representation:

(2π)−p/2 |Σ|−1/2 exp
[
− (Yi −Xiβ)′Σ−1 (Yi −Xiβ) /2

]
where the subscript i refers to a subject rather than a single observation
(multivariate versus univariate representation).

To obtain the ML estimates of β and Σ we maximize the likelihood,
which is the product of this expression over the n subjects.

The solutions to this maximization problem are the ML estimates of β
and Σ.
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Although the MLEs have the usual large sample (or asymptotic)
properties, the MLE of Σ has well-known bias in small samples (e.g. the
diagonal elements of Σ are underestimated).

To see this problem, consider ordinary regression with independent errors.

If the model is

Yi = β0 + β1Xi1 + . . .+ βk−1Xik−1 + ei

= Xiβ + ei

and the n observations are independent, we can maximize the likelihood

(
2πσ2

)−n/2
exp

[
−

n∑
i=1

(Yi −Xiβ)2
/2σ2

]
.
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This gives the usual least squares estimator of β, but the ML estimator of
σ2 is

σ̂2 =
n∑
i=1

(
Yi −Xiβ̂

)2

/n

Note: The denominator is n. Furthermore, it can be shown that

E(σ̂2) =
(
n− k
n

)
σ2.

As a result, the ML estimate of σ2 will be biased in small samples and will
underestimate σ2.
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In effect, the bias arises because the ML estimate has not taken into
account that β, also, is estimated. That is, in the estimator of σ2 we have
replaced β by β̂.

It should not be too surprising that similar problems arise in the
estimation of Σ.

Recall: An unbiased estimator is given by using n− k as the denominator
instead of n.
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The theory of residual or restricted maximum likelihood estimation was
developed to address this problem.

The main idea behind REML is to eliminate the parameters β from the
likelihood so that it is defined only in terms of Σ. This can be done in a
number of ways.

One possible way to obtain the restricted likelihood is to consider
transformations of the data to a set of linear combinations of observations
that have a distribution that does not depend on β.

For example, the residuals after estimating β by ordinary least squares
can be used.

The likelihood for these residuals will depend only on Σ, and not on β.

116



Thus, rather than maximizing

−n
2

ln |Σ| − 1
2

n∑
i=1

(
Yi −Xiβ̂

)′
Σ−1

(
Yi −Xiβ̂

)
REML maximizes the following slightly modified log-likelihood

−n
2

ln |Σ| − 1
2

n∑
i=1

(
Yi −Xiβ̂

)′
Σ−1

(
Yi −Xiβ̂

)

− 1
2

ln

∣∣∣∣∣
n∑
i=1

X′iΣ
−1Xi

∣∣∣∣∣
When the residual likelihood is maximized, we obtain estimates of Σ
whose degrees of freedom are corrected for the reduction in degrees of
freedom due to estimating β.

That is, the extra determinant term effectively makes a correction or
adjustments that is analogous to the correction to the denominator in σ̂2.
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When REML estimation is used, we obtain the generalized least squares
estimates of β,

β̂ =

[
n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1 n∑
i=1

(
X′iΣ̂

−1
Yi

)

where Σ̂ is the REML estimate of Σ.

Note: The residual maximum likelihood (REML) can be used to compare
different models for the covariance structure.

However, it should not be used to compare different regression models
since the penalty term in REML depends upon the regression model
specification.
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Instead, the standard ML log-likelihood should be used for comparing
different regression models for the mean.

In PROC MIXED, REML is the default maximization criterion. ML
estimates are obtained by specifying:

PROC MIXED method = ML;

119



ASSUMPTIONS ABOUT THE COVARIANCE
MATRIX

In the example, we allowed the covariance matrix to be “unrestricted” or
“unstructured”, allowing any valid pattern of variances and covariances.

The model was
Yij = Xijβ + eij

where the p errors for each subject have an unstructured covariance
matrix.

Some widely-used methods for analysis of repeated measurements make
special assumptions about the covariance matrix.
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Historically, one of the most popular methods is known as “univariate” or
“mixed-model” analysis of variance.

This model assumes the correlation between repeated measurements arises
because each subject has an underlying (latent) level of response which
persists over time or treatment.

This subject effect is treated as a random variable in the mixed-model
ANOVA.

Thus, if the expected response to treatment is given by

E (Yij) = Xijβ

the response for subject i is assumed to differ from the population mean
by a subject effect, bi, and a within-subject measurement error, wij.
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The mixed-model for repeated measurements is

Yij = Xijβ + bi + wij

(β0 + bi) + β1Xij1 + . . . βpXijp + wij

Note: The bi and wij are assumed to be independent.

That is, we distinguish two sources of variation that account for
differences in the response of subjects measured at the same occasion:

1. Between-Subject Variation: Different subjects simply respond
differently; some are “high” responders, some are “low” responders,
and some are “medium” responders.

2. Within-Subject Variation: Random variation arising from the process of
measurement; e.g. due to measurement error and/or sampling
variability.
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Random Intercepts Model:

Time

R
es

po
ns

e

0 1 2 3 4 5

o
o

o
o o

o
o

o o

o o

o
o o

o
o

o
o o o

o o

Subject 1

Subject 2

123



If we let var (bi) = σ2
b and var (wij) = σ2

w the covariance matrix of the
repeated measurement can be shown to have the following compound
symmetry form:



σ2
b + σ2

w σ2
b σ2

b . . . σ2
b

σ2
b σ2

b + σ2
w σ2

b . . . σ2
b

σ2
b σ2

b σ2
b + σ2

w . . . σ2
b

σ2
b σ2

b σ2
b . . . σ2

b

. . . .

. . . .

. . . .
σ2
b σ2

b σ2
b . . . σ2

b + σ2
w
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The compound symmetry assumption is usually inappropriate for
longitudinal data. Why?

The validity of the assumption of compound symmetry can be checked in
the data.

To fit the model under the assumption of compound symmetry, simply
change the repeated statement in PROC MIXED to read:

repeated time/type=cs subject=id r;
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SAS Output from Analysis of the Blood Pressure Data
Under the Assumption of Compound Symmetry

Estimated R Matrix for id 1

Row Col1 Col2 Col3 Col4
1 79.8618 53.4943 53.4943 53.4943
2 53.4943 79.8618 53.4943 53.4943
3 53.4943 53.4943 79.8618 53.4943
4 53.4943 53.4943 53.4943 79.8618

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr > |Z|
CS id 53.4943 19.5336 2.74 0.0062
Residual 26.3675 4.9391 5.34 <0.0001
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Fit Statistics

-2 Res Log Likelihood 518.3
AIC (smaller is better) 522.3
AICC (smaller is better) 522.5
BIC (smaller is better) 524.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > Chi Sq
1 42.23 <.0001
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Solution for Fixed Effects

Standard t
Effect trt Estimate Error DF Value Pr > |t|

Intercept 102.600 1.9983 19 51.34 <0.0001
trt 0 7.200 1.6238 57 4.43 <0.0001
trt 1 4.750 1.6238 57 2.93 0.0049
trt 2 -3.050 1.6238 57 -1.88 0.0655
trt 3 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square Pr > Chi Sq

trt 3 57 48.47 <0.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

T2 - T1 -7.8000 1.6238 57 -4.80 <0.0001
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Assessing the Adequacy of Compound Symmetry

The adequacy of the compound symmetry assumption can be formally
tested by comparing the goodness of fit of the compound symmetry to the
unrestricted or unstructured model.

Recall: Fit Statistics for Unstructured Covariance

Fit Statistics

-2 Res Log Likelihood 504.8
AIC (smaller is better) 524.8
AICC (smaller is better) 528.2
BIC (smaller is better) 534.7
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To check whether the assumption of compound symmetry is appropriate,
we use the information that is provided in the Fit Statistics panel of the
SAS output.

The Res Log Likelihood measures the goodness of fit of the assumed
covariance structure.

To calculate the likelihood ratio test comparing the compound symmetry
to the unstructured model, take twice the difference in log likelihoods and
compare to the chi-squared distribution.
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Example:

CS UN

Res LL -259.2 -252.4
-2 LL 518.3 504.8
No. of Covariance Parameters 2 10

-2 Log Likelihood Ratio: 518.3 - 504.8 = 13.5 with 8
(i.e., 10− 2) degrees of freedom, p ≈ 0.097.

Therefore, at the 0.05 significance level, we fail to reject the assumption of
compound symmetry.

Thus, the compound symmetry assumption appears to be adequate for
these data.

In general, however, the compound symmetry assumption is inappropriate
for longitudinal data.

Later in the course we will consider alternative models for the covariance.
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SOME REMARKS ON MISSING DATA

Missing data arise in longitudinal studies whenever one or more of the
sequences of measurements is incomplete, in the sense that some intended
measurements are not obtained.

Let Y(o) denote the measurements observed and Y(m) denote the
measurements that are missing.

For incomplete data to provide valid inference about a general linear
model, the mechanism (probability model) producing the missing
observations must satisfy certain assumptions.
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A hierarchy of three different types of missing data mechanisms can be
distinguished:

1) Data are missing completely at random (MCAR) when the probability
that an individual value will be missing is independent of Y(o) and
Y(m). Many methods of analysis are valid when the data are MCAR.
Valid methods include maximum likelihood and various ad hoc
methods (e.g. ‘complete case’ analyses).
Example: ‘rotating panel’ designs.

2) Data are missing at random (MAR) when the probability that an
individual value will be missing is independent of Y(m) (but may
depend on Y(o)). If this assumption holds, likelihood-based inference is
valid, but most ad hoc methods are not.
Example: subject ‘attrition’ related to previous performance.
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3) Missing data are nonignorable when the probability that an individual
value will be missing depends on Y(m). If missing values are
nonignorable, standard methods of analysis are not valid. Usually, a
sensitivity analysis is recommended.

Note: Under assumptions 1) and 2), the missing data mechanism is often
referred to as being ‘ignorable’.
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CROSSOVER DESIGNS

So far, we have considered the single-group repeated measures design
where each subject receives each of p treatments at p different occasions.

Next we consider a variant of the single-group repeated measures design
known as the crossover design.

In the simplest version of the cross-over design, two treatments, say A and
B, are to be compared. Subjects are randomly assigned to the two
treatment orders: A→B and B→A.

Example: Placebo-controlled study of the effect of erythropoietin on
plasma histamine levels and pruritus scores of 10 dialysis patients.

Treatment schedule was 5 weeks of placebo and 5 weeks of erythropoietin
in random order.

Designs in which subjects are randomly assigned to either P→T (placebo,
treatment) or T→P are called two-period crossover designs.
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If we assume that there is no carryover2 of treatment effects from period 1
to period 2, we can write the basic model as

Yij = β0 + β1timeij + β2trtij + eij

where Yij is the response of subject i at time j, and timeij and trtij are
the values of the time and treatment variable associated with Yij.
If there is a carryover of the effect of treatment (e.g. erythropoietin) from
period 1 to period 2, we need to define a new indicator variable:

COij = 1, if T given in the previous period;
0, otherwise.

This indicator variable will equal 1 only in the second period for the group
assigned to T→P.

2Carryover is the persistence of a treatment effect applied in one period in a subsequent period of treatment.
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Example: Placebo-controlled study of the effect of
erythropoietin on plasma histamine levels.

id time trt co y

1 1 1 0 24
1 2 2 0 5
2 1 1 0 23
2 2 2 0 8
3 1 1 0 19
3 2 2 0 3
4 1 1 0 26
4 2 2 0 8
5 1 1 0 16
5 2 2 0 3
6 1 2 0 2
6 2 1 1 18
7 1 2 0 8
7 2 1 1 29
8 1 2 0 5
8 2 1 1 26
9 1 2 0 6
9 2 1 1 28
10 1 2 0 4
10 2 1 1 19
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SAS CODE

data hist;
infile ‘g:\shared\bio226\histam.dat’;
input id time trt co y;

run;

proc sort data=hist;
by time trt;

run;

proc means;
var y;
by time trt;

run;

proc mixed data=hist;
class id time trt co;
model y=time trt co /s chisq;
repeated time / type=un subject=id r;

run;
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OUTPUT OF PROC MEANS

Analysis Variable: Y
———————— time=1 trt=1 ————————

N Mean Std Dev Minimum Maximum
5 21.6000000 4.0373258 16.0000000 26.0000000

———————— time=1 trt=2 ————————

N Mean Std Dev Minimum Maximum
5 5.0000000 2.2360680 2.0000000 8.0000000

———————— time=2 trt=1 ————————

N Mean Std Dev Minimum Maximum
5 24.0000000 5.1478151 18.0000000 29.0000000

———————— time=2 trt=2 ————————

N Mean Std Dev Minimum Maximum
5 5.4000000 2.5099801 3.0000000 8.0000000
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The MIXED Procedure
Unstructured Covariance - With Carryover Effects

Estimated R Matrix for id 1

Row Col1 Col2
1 10.6500 9.4750
2 9.4750 16.4000

Fit Statistics

-2 Res Log Likelihood 87.4
AIC (smaller is better) 93.4
AICC (smaller is better) 95.4
BIC (smaller is better) 94.3

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 7.4000 3.3660 9 2.20 0.0555
time 1 -0.4000 2.3259 9 -0.17 0.8673
time 2 0 . . . .
trt 1 16.6000 2.0640 9 8.04 <0.0001
trt 2 0 . . . .
co 0 -2.0000 4.2895 9 -0.47 0.6521
co 1 0 . . . .
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The MIXED Procedure
Compound Symmetry - With Carryover Effects

Estimated R Matrix for id 1

Row Col1 Col2
1 13.5250 9.4750
2 9.4750 13.5250

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS id 9.4750
Residual 4.0500

Fit Statistics

-2 Res Log Likelihood 88.1

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |T |
Intercept 7.4000 3.4504 9 2.14 0.0606
time 1 -0.4000 2.3259 7 -0.17 0.8683
time 2 0 . . . .
trt 1 16.6000 2.3259 7 7.14 0.0002
trt 2 0 . . . .
co 0 -2.0000 4.2895 7 -0.47 0.6552
co 1 0 . . . .
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Test for compound symmetry compares -2 Res Log Likelihood from the
unstructured and compound symmetry models:

-2 Res Log L

Compound Symmetry 88.1
Unstructured 87.4

⇒ −2∗Res Log Likelihood Ratio = 0.7 with 1 df.

Assumption of compound symmetry is defensible.

Note: With carryover effects, the estimated treatment effect, 16.6, is
based entirely on the data in the first period.

That is, the estimate of the treatment effect is not based on
within-subject comparisons, and has standard error of 2.33.

Next, consider model without carryover effects.
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The MIXED Procedure
Compound Symmetry - Without Carryover Effects

Estimated R Matrix for ID 1

Row Col1 Col2
1 12.5250 8.4750
2 8.4750 12.5250

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS id 8.4750
Residual 4.0500

Fit Statistics

-2 Res Log Likelihood 93.0
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Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |T |
Intercept 5.9000 1.2062 9 4.89 0.0009
time 1 -1.4000 0.9000 8 -1.56 0.1584
time 2 0 . . . .
trt 1 17.6000 0.9000 8 19.56 <0.0001
trt 2 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square Pr > ChiSq

time 1 8 2.42 0.1198
trt 1 8 382.42 0.0001

The pooled estimate of the treatment effect, combining the responses from
period 1 and period 2, is 17.6.

Note: Assuming no carryover effects, the treatment effect is based on
within-subject comparisons, and the standard error has decreased from
2.33 to 0.90.
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STATISTICAL PROPERTIES OF THE
CROSSOVER DESIGN

The compound symmetry model can be written

Yij = β0 + β1timeij + β2trtij + β3COij + bi + wij

where bi is the subject effect, with

var (bi) = σ2
b

var (wij) = σ2
w

Then
var (Yij) = σ2

b + σ2
w,

cov (Yi1, Yi2) = σ2
b
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Let
ȲP1 ȲT2

ȲT1 ȲP2

be the mean responses at each combination of treatment and time.

Then, if d̄1 = ȲP1 − ȲT2 and d̄2 = ȲP2 − ȲT1,

V ar
(
d̄j
)

= 2σ2
w/n,

where n is the number of subjects receiving each sequence.
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With no carryover effects, the treatment effect is estimated by

(
d̄1 + d̄2

)
/2, which has variance σ2

w/n.

In contrast, with two independent groups, and 2n subjects in each group,
an estimate of the treatment effect has variance

(
σ2
b + σ2

w

)
/n.

Thus, the crossover design has the potential to substantially increase the
precision of the estimate of the treatment effect.
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The difficulty is that the carryover effect is estimated by(
ȲT2 − ȲP2

)
−
(
ȲT1 − ȲP1

)
=
(
ȲT2 + ȲP1

)
−
(
ȲT1 + ȲP2

)
which has variance (

8σ2
b + 4σ2

w

)
/n.

Thus, the test for carryover will be much less powerful than the test for
treatment effects. It can fail to detect interactions that are substantially
larger than the putative treatment effects.

Dilemma: Choice of estimator for treatment effect is between an efficient
but potentially biased estimator (using within-subject comparisons) and
an unbiased but inefficient estimator (using between-subject comparisons).
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This problem is an intractable feature of the simple crossover design.
Thus, it should be used only when carryover is biologically implausible.

Carryover can often be avoided by having a sufficiently long wash-out
time between the two periods.

Textbooks by Senn (1993), Jones and Kenward (1989) and Crowder and
Hand (1989) describe a wide variety of more complex crossover designs
that are less vulnerable to the problem of carryover.

For example, Crowder and Hand (1989) recommend the design

Group 1 PTT
Group 2 TPP
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SUMMARY

When the crossover design is used, it is important to avoid carryover.

Designing a crossover study requires knowledge and consideration of the
disease and the likely effects of treatment:

• The disease should be chronic and stable

• The effects of treatment should develop fully within the treatment
period

Washout periods should be sufficiently long for complete reversibility of
treatment effect.

The crossover design may be useful for demonstrating the bio-equivalence
of two formulations of the same drug.
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PARALLEL GROUPS REPEATED MEASURES
DESIGN

In the parallel groups design, two or more groups of subjects are defined
and measured repeatedly over time.

The groups can be defined by characteristics of the study subjects, such as
age, gender, or baseline blood pressure level. Studies based on such
categories are observational.

Alternatively, groups can be defined by randomization to alternative
treatments.

We consider designs in which all subjects are intended to be measured at
the same set of follow up times (balanced). However, the methods will
allow for missing data (incomplete).
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The main goal of the analysis will be to characterize the patterns of change
over time in the several groups and to determine whether those patterns
differ in the groups.

Example:

In a randomized clinical trial of HIV infected patients, we may wish to
study whether alternative treatments have differential effects on the
pattern of decline of CD4 count.

We focus initially on the two-groups design.

Generalizations to more than two groups are straightforward.
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DATA STRUCTURE FOR THE BALANCED
TWO-GROUPS REPEATED MEASURES DESIGN

1 2 3 . . . p

Group 1
Subj 1 Y11 Y12 Y13 . . . Y1p

2 Y21 Y22 Y23 . . . Y2p

. . . . . . . .

. . . . . . . .
m Ym1 Ym2 Ym3 . . . Ymp

Group 2
Subj m+ 1 Ym+1,1 Ym+1,2 Ym+1,3 . . . Ym+1,p

m+ 2 Ym+2,1 Ym+2,2 Ym+2,3 . . . Ym+2,p

. . . . . . . .

. . . . . . . .
n Yn1 Yn2 Yn3 . . . Ynp
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Models for the Mean Response

Next we discuss different choices for modelling the mean response over
time and emphasize that they can all be described by the general linear
model

E (Yi) = µi = Xiβ

for appropriate choices of Xi.

We can distinguish two basic strategies for modelling the time trend:

I. Arbitrary Means (Profile Analysis)

II. Parametric Curves

In the following, we will assume that each subject is measured on all p
occasions, later we will show how to modify models to account for less
than p responses due to missed examinations or dropouts.

155



I. Profile Analysis

Consider the following example from a two group randomized trial
comparing Treated and Control.

Occasion
Group 1 2 ... p

Treated µT1 µT2 ... µTp
Control µC1 µC2 ... µCp

Difference ∆1 ∆2 ... ∆p

In this study we are primarily interested in testing the null hypothesis of
no treatment effect.

The appropriate test of no treatment effect will depend on whether Yi

includes a baseline response or only post-randomization responses.
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Null Hypothesis of No Treatment Effect

(a) Yi includes baseline response:

H0 : ∆1 = ... = ∆p

H0 : no time-by-group interaction

Are the “profiles of means” similar in the two treatment groups, in the
sense that the line segments between adjacent occasions are parallel?

(b) Yi is post-randomization response only:

H0 : ∆1 = . . . = ∆p = 0

H0 : no group effect

Are the profiles of means parallel and also at the same level, i.e. do the
profiles of means coincide?
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Graphical representation of the null hypothesis of (a) no group × time interaction effect,
(b) no time effect, and (c) no group effect.
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In profile analysis we can distinguish three hypotheses that may be of
scientific interest.

Scientific hypotheses:

H10: Are the profiles of means similar in the groups, in the sense that the
line segments between adjacent occasions are parallel? This is the
hypothesis of no group by time interaction.

H20: If the population profiles are parallel, are they also at the same
level? This is the hypothesis of no group effect.

H30: If the population profiles are parallel, are the means constant over
time? This is the hypothesis of no time effect.

Although these general formulations of the study hypotheses are a good
place to begin, the appropriate hypotheses in a particular study must be
derived from the relevant scientific issues in that investigation.
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General Linear Model Formulation

Let n be the number of subjects and N be the total number of
observations. Consider the ‘univariate representation’ of the data, with
one row for each observation of the dependent variable.

To write the model for the two-group repeated measures design with p
occasions of measurement, we must define p− 1 indicator variables.

For the ith observation in the transformed data set (i = 1, . . . , N), let

Xij = 1, observation taken at time j;
0, otherwise.

for j = 1, . . . , p− 1.
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We can let Xi,p be the indicator variable for group. That is

Xi,p = 1, observation in group 1;
0, observation in group 2.

The interaction variables can be thought of as products of the time and
group indicators,

Xi,p+j = XijXip j = 1, . . . , p− 1

When interaction terms are included, the model has 2p regression
parameters.
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For example, if the referent occasion is time p, the mean value in group 1
at time 1 is

β0 + β1 + βp + βp+1

while the mean value in group 2 is

β0 + β1

Time

1 2 . . . p

Group 1 β0 + β1 β0 + β2 . . . β0 + βp
+βp + βp+1 +βp + βp+2

Group 2 β0 + β1 β0 + β2 . . . β0

Thus, profile analysis can be expressed in terms of the general linear model

E (Yi) = µi = Xiβ
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To conduct a profile analysis of data from two or more treatment groups
measured repeatedly over time, we can use the following SAS code:

proc mixed;
class id trt time t;
model y=trt time trt*time /s chisq;
repeated t / type=un subject=id r;

run;

This model assumes an unstructured covariance matrix. However,
alternative assumptions about the covariance structure can be considered.

Next, we consider a profile analysis of the blood lead data of 100 children
from the treatment and placebo groups of the Treatment of Lead-Exposed
Children (TLC) trial to illustrate these ideas.

163



Example: Treatment of Lead-Exposed Children Trial

• Exposure to lead during infancy is associated with substantial deficits
in tests of cognitive ability

• Chelation treatment of children with high lead levels usually requires
injections and hospitalization

• A new agent, Succimer, can be given orally

• Randomized trial examining changes in blood lead level during course
of treatment

• 100 children randomized to placebo or succimer

• Measures of blood lead level at baseline, 1, 4 and 6 weeks
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BLOOD LEAD VALUES FROM THE FIRST TEN OF 100 CHILDREN TREATED
WITH EITHER ACTIVE THERAPY (TRT = A) OR PLACEBO (TRT = P) AND

MEASURED AT BASELINE AND 7, 28, AND 42 DAYS

ID TRT PbB1 PbB2 PbB3 PbB4

046 P 30.8 26.9 25.8 23.8
149 A 26.5 14.8 19.5 21.0
096 A 25.8 23.0 19.1 23.2
064 P 24.7 24.5 22.0 22.5
050 A 20.4 2.8 3.2 9.4
210 A 20.4 5.4 4.5 11.9
082 P 28.6 20.8 19.2 18.4
121 P 33.7 31.6 28.5 25.1
256 P 19.7 14.9 15.3 14.7
416 P 31.1 31.2 29.2 30.1

MEAN VALUES (SD) BY TIME AND TRT GROUP

T1 T2 T3 T4

Treatment 26.5 13.5 15.3 19.7
(5.0) (7.7) (8.1) (7.0)

Placebo 26.3 24.7 24.1 23.2
(5.0) (5.5) (5.8) (6.2)
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SAS CODE

data lead;
infile ‘g:\shared\bio226\leadnew.dat’;
input id trt $ y1 y2 y3 y4;
y=y1; time=1; t=1; output;
y=y2; time=2; t=2; output;
y=y3; time=3; t=3; output;
y=y4; time=4; t=4; output;

run;

proc mixed data = lead noclprint;
class id trt time t;
model y=trt time time*trt / s chisq;
repeated t / type=un subject=id r;
estimate ‘Trt*Time 2’

trt*time -1 1 0 0 1 -1 0 0 / e;
estimate ‘Trt*Time 3’

trt*time -1 0 1 0 1 0 -1 0;
estimate ‘Trt*Time 4’

trt*time -1 0 0 1 1 0 0 -1;
run;
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Summary of SAS Output

Estimated R Matrix for id 3200046

Row Col1 Col2 Col3 Col4

1 25.2257 19.0504 19.4257 17.1781
2 19.0504 44.3065 35.3026 27.4906
3 19.4257 35.3026 48.9190 31.4383
4 17.1781 27.4906 31.4323 43.5820

Fit Statistics

-2 Res Log Likelihood 2385.8
AIC (smaller is better) 2405.8
AICC (smaller is better) 2406.4
BIC (smaller is better) 2431.8
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Solution for Fixed Effects

Standard
Effect trt time Estimate Error DF t Value Pr > |t|
Intercept 23.2440 0.9336 98 24.90 <.0001
trt A -3.5700 1.3203 98 -2.70 0.0081
trt P 0 . . . .
time 1 3.0280 0.8301 98 3.65 0.0004
time 2 1.4146 0.8113 98 1.75 0.0840
time 3 0.8160 0.7699 98 1.06 0.2918
time 4 0 . . . .
trt*time A 1 3.8380 1.1739 98 3.27 0.0015
trt*time A 2 -7.5940 1.1473 98 -6.62 <.0001
trt*time A 3 -5.2380 1.0888 98 4.81 <.0001
trt*time A 4 0 . . . .
trt*time P 1 0 . . . .
trt*time P 2 0 . . . .
trt*time P 3 0 . . . .
trt*time P 4 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
trt 1 98 29.32 <.0001
time 3 98 61.56 <.0001
trt*time 3 98 37.68 <.0001
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Coefficients for Trt*Time 2

Effect trt time Row 1

Intercept
trt A
trt P
time 1
time 2
time 3
time 4
trt*time A 1 -1
trt*time A 2 1
trt*time A 3
trt*time A 4
trt*time P 1 1
trt*time P 2 -1
trt*time P 3
trt*time P 4

Estimates

Standard
Label Estimate Error DF t Pr > |t|

Trt*Time 2 -11.4320 1.1213 98 -10.20 <0.0001
Trt*Time 3 -9.0760 1.1882 98 -7.64 <0.0001
Trt*Time 4 -3.8380 1.1739 98 -3.27 0.0015
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For illustrative purposes, consider the model with compound symmetry
covariance.

Fit Statistics

-2 Res Log Likelihood 2415.5
AIC (smaller is better) 2419.5
AICC (smaller is better) 2419.5
BIC (smaller is better) 2424.7

A likelihood ratio test for compound symmetry

-2 Res Log L

Compound Symmetry 2415.5
Unstructured 2385.8

⇒ -2*Res log likelihood ratio = 29.7, 8 df.
(p < 0.0005)

Clearly, the assumption of compound symmetry is not defensible.
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Summary of Features of Profile Analysis

• Does not assume any specific time trend

• May have low power to detect specific trends; e.g., linear trends

• Can be used to accommodate “area under the curve” (AUC) analyses
or other linear combinations of response vector

• How to incorporate mistimed measurements?
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II. Parametric Curves
An alternative approach for analyzing the parallel-groups repeated
measures design is to consider parametric curves for the time trends.

In this approach we model the means as an explicit function of time.

(a) Linear Trend

If the means tend to change linearly over time we can fit the following
model:

E (Yij) = β0 + β1Timej + β2Trti + β3Timej × Trti
Then, for subjects in treatment group 2,

E (Yij) = β0 + β1Timej

While for subjects in treatment group 1,

E (Yij) = (β0 + β2) + (β1 + β3) Timej

Thus, each group’s mean is assumed to change linearly over time.
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SAS CODE FOR MODELING A LINEAR TREND
IN TIME

proc mixed;
class id trt t;
model y=trt time time*trt / s chisq;
repeated t / type=un subject=id r;

run;

Note: t is a copy of the variable time.

In this model time is no longer included in the list of class variables.

This model yields the following expected values:

E (Yij) = β0 + β1Timej + β2Trti + β3Timej × Trti

where Timej is modeled as a continuous variable and Trti is an indicator
variable which takes the value 1 if the subject receives treatment 1, and
zero otherwise.
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Example: Treatment of Lead-Exposed Children Trial

We return now to the analysis of the Treatment of Lead-Exposed Children
(TLC) trial and consider a linear trend in time.

MEAN VALUES BY TIME AND TRT GROUP

T1 T2 T3 T4

Treatment 26.5 13.5 15.3 19.7
(5.0) (7.7) (8.1) (7.0)

Placebo 26.3 24.7 24.1 23.2
(5.0) (5.5) (5.8) (6.2)

Note: It would appear that the mean values in the Placebo group only
can be described by a linear trend. We will proceed with the analysis for
illustrative purposes only.
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SAS CODE

data lead;
infile ‘g:\shared\bio226\leadnew.dat’;
input id trt $ y1 y2 y3 y4;
y=y1; time=0; t=1; output;
y=y2; time=1; t=2; output;
y=y3; time=4; t=3; output;
y=y4; time=6; t=4; output;

run;

proc mixed data=lead method=reml;
class id trt t;
model y=trt time time*trt / s chisq;
repeated t / type=un subject=id r;

run;
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MODELING LINEAR TREND IN TIME, UNSTRUCTURED
COVARIANCE MATRIX

ML Estimation

Estimated R Matrix for ID 3200046

Row col1 col2 col3 col4

1 27.2306 8.4399 11.9547 15.0550
2 8.4399 100.39 74.6766 38.7560
3 11.9547 74.6766 76.3701 39.4166
4 15.0550 38.7560 39.4166 45.8154

Note that the estimated covariance matrix is discernibly different from
that obtained in the profile analysis. Why?
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Fit Statistics

-2 Res Log Likelihood 2530.4
AIC (smaller is better) 2550.4
AICC (smaller is better) 2551.0
BIC (smaller is better) 2576.5

Solution for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept 26.0485 0.6959 98 37.43 <0.0001
trt A -1.5086 0.9842 98 -1.53 0.1285
trt P 0 . . . .
time -0.4122 0.1228 98 -3.36 0.0011
trt*time A -0.0459 0.1737 98 -0.26 0.7922
trt*time P 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

trt 1 98 2.35 0.1285
time 1 98 25.10 <.0001
trt*time 1 98 0.07 0.7922
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For participants in the placebo group,

E (Yij) = 26.05− 0.41 Timej

while for participants in the active treatment group,

E (Yij) = (26.05− 1.51)− (0.41 + 0.05) Timej

= 24.54− 0.46 Timej

Is the model with linear trend in time appropriate for these data?

Recall: The linear trend model and profile analysis (where time is treated
as a categorical variable) are nested models.
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Assessing Adequacy of Linear Trend Model

Compare the ML log likelihood of the linear trend model to the ML log
likelihood of the model with time treated as a categorical variable (i.e.,
profile analysis).

Note: We must re-fit both models using ML rather than REML (the
default):

proc mixed data=lead method=ml;

-2 (ML) Log L

Profile Analysis 2394.4
Linear Trend Model 2527.8

-2*log likelihood ratio = 133.4, 4 df.
(p < 0.0001)

⇒ Linear trend model is clearly not defensible.
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(b) Quadratic Trend

If the means tend to change over time in a quadratic manner, we can fit
the following model:

E (Yij) = β0 + β1Timej + β2Time2
j + β3Trti

+β4Timej × Trti + β5Time2
j × Trti

Then, for subjects in treatment group 2,

E (Yij) = β0 + β1Timej + β2Time2
j

While for subjects in treatment group 1,

E (Yij) = (β0 + β3) + (β1 + β4) Timej + (β2 + β5) Time2
j
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Aside: To avoid problems of collinearity in the quadratic (or in any
higher-order polynomial) trend model, should always “center” Timej on
its mean prior to the analysis (i.e. replace Timej by its deviation from the
mean).

For example, suppose Timej = (1, 2, ..., 10).

The correlation between Timej and Time2
j is 0.975.

However, if we create a “centered” variable, say
Time(C)j =

(
Timej − Time

)
, then the correlation between Time(C)j and

Time(C)2
j is zero.
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(c) Linear Spline

If the means change over time in a piecewise linear manner, we can fit the
following linear spline model with knot at t∗:

E (Yij) = β0 + β1Timej + β2Trti + β3Timej × Trti Timej ≤ t∗
E (Yij) = β0 + β1t

∗ + β2Trti + β3t
∗ × Trti

+β4(Timej − t∗) + β5(Timej − t∗)× Trti Timej > t∗

 

 

β0

← β1

← β4

0 t∗
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Then, for subjects in treatment group 2,

E (Yij) = β0 + β1Timej Timej ≤ t∗
E (Yij) = β0 + β1t

∗ + β4(Timej − t∗) Timej > t∗

While for subjects in treatment group 1,

E (Yij) = (β0 + β2) + (β1 + β3)Timej Timej ≤ t∗
E (Yij) = (β0 + β2) + (β1 + β3)t∗

+(β4 + β5)(Timej − t∗) Timej > t∗

Note that models with more than one knot can be considered.
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Example: Treatment of Lead-Exposed Children Trial

In the Treatment of Lead-Exposed Children (TLC) trial it would appear
that a piecewise linear model with knot at week 1 (T2) might be
appropriate.

MEAN VALUES BY TIME AND TRT GROUP

T1 T2 T3 T4

Treatment 26.5 13.5 15.3 19.7
(5.0) (7.7) (8.1) (7.0)

Placebo 26.3 24.7 24.1 23.2
(5.0) (5.5) (5.8) (6.2)
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SAS CODE

data lead;
infile ‘g:\shared\bio226\leadnew.dat’;
input id trt $ y1 y2 y3 y4;
y=y1; time=0; t=1; output;
y=y2; time=1; t=2; output;
y=y3; time=4; t=3; output;
y=y4; time=6; t=4; output;

run;

data spline;
set lead;

st1=min(time,1);
st2=max(0,time-1);

proc mixed data=spline;
class id trt t;
model y=trt st1 st2 st1*trt st2*trt / s chisq;
repeated t / type=un subject=id r;

run;
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Fit Statistics

-2 Res Log Likelihood 2403.8
AIC (smaller is better) 2423.8
AICC (smaller is better) 2424.4
BIC (smaller is better) 2449.9

Solution for Fixed Effects

Standard
Effect trt Estimate Error DF t Value Pr > |t|
Intercept 26.2522 0.7086 98 37.05 <.0001
trt A 0.4422 1.0021 98 0.44 0.6600
trt P 0 . . . .
st1 -1.6066 0.7927 98 -2.03 0.0454
st2 -0.2653 0.1561 98 -1.70 0.0925
st1*trt A -11.4800 1.1211 98 -10.24 <.0001
st1*trt P 0 . . . .
st2*trt A 1.3608 0.2208 98 6.16 <.0001
st2*trt P 0 . . . .
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Then, for subjects in the placebo group,

E (Yij) = 26.25− 1.61Weekj Weekj ≤ 1
E (Yij) = (26.25− 1.61)− 0.27(Weekj − 1) Weekj > 1

While for subjects in the succimer group,

E (Yij) = (26.25 + 0.44)− (1.61 + 11.48)Weekj Weekj ≤ 1
E (Yij) = (26.25 + 0.44− 1.61− 11.48)

+(−0.27 + 1.36)(Weekj − 1) Weekj > 1

PREDICTED MEAN VALUES

T1 T2 T3 T4

Treatment 26.7 13.6 16.9 19.1

Placebo 26.3 24.6 23.8 23.3
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Summary of Features of Parametric Curve Models

1. Allows one to model time trend and treatment effect(s) as a function of
a small number of parameters. That is, the treatment effect can be
captured in one or two parameters, leading to more powerful tests
when these models fit the data.

2. Since E(Yij) is defined as an explicit function of the time of
measurement, Timej, there is no reason to require all subjects to have
the same set of measurement times, nor even the same number of
measurements.

3. May not always be possible to fit data adequately.

Finally, note that the parametric curve analyses in (a)-(c) can all be
expressed in terms of the general linear model

E (Yi) = µi = Xiβ
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GENERAL LINEAR MODEL FOR PARALLEL
GROUPS REPEATED MEASURES DESIGN

In the general linear model formulation, information about treatment
group and time of observation will be expressed through a set of
covariates rather than through subscripting.

Thus, associated with each vector of responses Yi, there is a matrix of
covariates Xi.

The model for Yi can then be written as

E (Yi) = µi = Xiβ
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Assumptions

1. The subjects represent random samples from each of the study groups.

2. Observations from different individuals are independent, while repeated
measurements of the same individual are not assumed to be
independent.

3. The vector of observations, Yi for a given subject has a multivariate
normal distribution with

• mean given by the linear regression model,

E (Yi) = µi = Xiβ

• covariance matrix, Σ

4. If observations are missing, they are missing at random (MAR) or
missing completely at random (MCAR).
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Handling Baseline Measurements
There are a number of possible ways to handle baseline measurements in
the analysis.

1. Base analysis on change scores only, say Yij − Yi1 (difference between
the response at times 2 through p and the baseline response).

• This approach has broad intuitive appeal
• Loss of efficiency
• May have missing baseline measures

2. Include baseline measure as a covariate; Yi is the post-baseline
responses only

• Usually only appropriate for randomized studies
• More efficient than change score analysis
• There can be a proliferation of parameters

E (Yij|Yi1) = µij + γjYi1; j = 2, ..., p.
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3. Include baseline as part of the response vector Yi, and if appropriate,
adjust the model for treatment effect to exclude differences at baseline

• Usually only appropriate for randomized studies

• As efficient as analysis that treats baseline as a covariate

• Can handle missing baseline measures
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Issues in Adjusting for Baseline in Non-Randomized
Studies

Adjusting for baseline is no substitute for randomization.

Adjusting for baseline in non-randomized studies can potentially lead to
erroneous conclusions.

Example 1: Consider an observational study of pulmonary function
decline in adults. Suppose that asthmatics have lower pulmonary function
at all ages, but that the rates of decline are equal for asthmatics and
non-asthmatics.

Suppose the model that describes the data is:

Yij = β0 + β1Asthmai + β2Ageij + eij
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Thus the model for the non-asthmatics is,

E(Yij) = β0 + β2Ageij

and the model for the asthmatics is,

E(Yij) = (β0 + β1) + β2Ageij

Clearly, the rate of change or decline, expressed by β2, is the same in the
two groups.

As a result, an analysis that compares the decline in the two groups would
conclude that there are no differences.

However, if we introduce the baseline value as a covariate, the model is:

Yij = β0 + β1Asthmai + β2Ageij + β3Yi0 + eij
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This model corrects the predicted values for asthmatics and
non-asthmatics to a common baseline value.

As a result, the decline in pulmonary function for the asthmatics will
appear to be greater than the decline for the non-asthmatics. Why?

Note that the analysis with baseline value as a covariate addresses a
somewhat different question.

It considers the conditional question:

“Is an asthmatic expected to show the same decline in pulmonary
function as a non-asthmatic, given they both have the same initial level of
pulmonary function?”

The answer to this questions is a resounding “No”.
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The asthmatic will be expected to decline more, for if she is initially at
the same level of pulmonary function as the non-asthmatic,

1. either her level of function is very high and will be expected to decline
or regress to the mean level for asthmatics, or

2. the non-asthmatic’s level of function is very low and expected to
increase or regress to the mean level for non-asthmatics

As a result, the rates of decline are not the same in the two groups (given
they have the same initial level of pulmonary function).
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Example 2: The early studies of Operation Head Start were designed to
select children at a similar developmental level for the Head Start and
control programs.

Children were selected from low income communities for the Head Start
program.

Because randomization was considered impractical, a control group was
selected from neighboring communities.

Unfortunately, the children from the neighboring communities had higher
income and greater access to educational resources.

The children were matched on initial or baseline developmental status,
e.g. by the Bayley Scales of Infant Development.
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Because the children from the low income community were selected from
the upper end of the distribution of developmental status, their post-test
scores tended to regress to the means in their communities.

Similarly, children from the neighboring communities were selected from
the lower end of the distribution of developmental status, and the
post-test scores in the control group regressed to their means.

Thus, despite the favorable impact of Head Start on development, the
initial studies found a larger increase in developmental scores during the
study period in the control children.

These results spuriously caused Head Start to appear to be ineffective.
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MODELING THE MEAN
We have discussed several models for the mean response for the k group repeated
measures design:

1. Profile Analysis:
This model may be chosen a priori or used to describe treatment effects when the
treatment effects do not have a simple form. The hypothesis of no treatment effect
corresponds to the test for no time by treatment interaction and has (k − 1)(p− 1)

d.f.
2. Parametric Curves:

These models may be chosen a priori or used descriptively when, for example, the
differences in expected response increase linearly with time. In the simplest form, a
linear trend in time is assumed and we fit the following model (in SAS notation):

y = time trt time*trt

where time is treated as a continuous variable.
In this model, the hypothesis of no longitudinal treatment effect corresponds to the
test for no time by treatment interaction and has (k − 1) d.f.
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This model can be extended in a natural way to include quadratic or
cubic trends; alternatively a piecewise linear model can be considered.

Note that these models are nested within the “saturated” model for the
mean assumed in profile analysis. As a result, it is possible to test the
adequacy of these models.

3. The Baseline or ‘Constant Effect’ Model:
In some studies the exposure or treatment might be expected to cause
a shift in the mean response that remains constant across measurement
occasions.

To fit a model describing a treatment effect that is constant over the
measurement occasions after baseline, we can create a new variable for
time:

posttime = 0 if baseline (time = 0)
1 if post-baseline (time > 0)
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Then, we can fit the following model (in SAS notation):

y = posttime trt posttime*trt

This model tests whether the differences between the treatment group
means, averaged over the (p− 1) post-baseline time periods, are
significantly different from the corresponding differences at baseline.

That is, the hypothesis of no longitudinal treatment effect corresponds
to the test of no posttime by trt interaction and has (k − 1) d.f.

Note that this model is nested within the saturated model, so that the
adequacy of the model relative to the saturated model can be tested.

Also, this model is valid for both randomized and non-randomized
studies.
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However, when there is randomization, the analysis of covariance test of
the constant effect of treatment is more powerful.

To see this, suppose that we have two repeated measures, Yi1 and Yi2,
with a compound symmetric covariance matrix.

Then, for an analysis based on the change score, Yi2 − Yi1,

var (Yi2 − Yi1) = σ2 − 2ρσ2 + σ2

= 2σ2 (1− ρ) .

In contrast, the analysis of covariance (with Yi1 treated as a covariate) has
residual variance

var (Yi2|Yi1) = σ2
(
1− ρ2

)
.

In this case, the residual variance of the analysis of covariance model is
always smaller than the residual variance of the repeated measures (or
change score) model.
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Consider the ratio of the two variances,

σ2
(
1− ρ2

)
2σ2 (1− ρ)

=
1 + ρ

2
.

Thus,

• when ρ = 1, the analyses are equally efficient

• when ρ = 0, the analysis of the change score is only half as efficient as
the analysis of covariance (which in turn is equivalent to an analysis of
Yi2 only)

• As ρ approaches −1, the relative efficiency of the analysis of the change
score approaches zero
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SUMMARY

To analyze data from the parallel groups repeated measures design:

1. Choose a “working” covariance structure.

Note that the choice of model for the mean and covariance are
interdependent.

For designed experiments: assume a saturated treatment-by-time
model. Use the REML log likelihood as the criterion to guide choice of
covariance structure.

Ordinarily, use the unstructured model unless p is large and/or a
simpler model is clearly satisfactory.

When p is relatively large and/or there are mistimed measurements,
alternative models for the covariance will need to be considered.
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2. Decide a priori whether to model effect of treatment on patterns of
change by:

a) time by treatment interaction, where time is regarded as a categorical
variable (profile analysis)

b) time trend(s) by treatment interaction(s), where the means are
modelled as an explicit function of continuous time (parametric curves)

c) treatment effects in an analysis that includes the baseline measure as a
covariate

d) treatment effects in an analysis that includes the baseline measure as
part of the response vector but assumes no treatment differences at
baseline

e) post-baseline time (posttime) by treatment interaction in a ‘constant
effect’ model

Use the ML log likelihood to compare nested models for the mean
differing by several degrees of freedom.

3. Make an initial determination of the final form of the regression
model.

4. Re-fit the final model using REML.
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GENERAL LINEAR MODEL FOR
LONGITUDINAL DATA

We have stressed that, in fitting linear models to longitudinal data, we
have two modeling tasks:

1. We must choose a covariance model that provides a good fit to the
observed variances and covariances.

2. We must fit a linear regression model that provides a good fit to the
mean of the outcome variable.

So far, the focus has been on balanced designs, where every individual is
measured at the same set of occasions.
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Next, we consider general linear models that

a) can handle mixed discrete and continuous covariates

b) allow a wider class of covariance structures

c) permit individuals to be measured on different number of occasions
and at different times

Later, we will describe how to obtain so-called robust variances that yield
valid standard errors when the assumed covariance matrix does not
provide a good fit to the observed covariance matrix.
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GENERAL LINEAR MODEL

Let Yij, j = 1, . . . , p, be the sequence of observed measurements for the ith

subject, i = 1, . . . , n.

(Later we will relax the assumption that each subject is observed at the
same time points).

Information about the time of observation, treatment group, and other
predictor variables can be expressed through a vector of covariates.

Each observation, Yij, has an associated set of covariates
Xij0, Xij1, Xij2, . . . , Xijk−1, where typically Xij0 = 1.
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The general linear model for Yij can be written

Yij = β0 + β1Xij1 + . . .+ βk−1Xijk−1 + eij

= Xijβ + eij

where

X′ij denotes the (k × 1) vector of covariates,
β = (β0, β1, β2, . . . , βk−1)′ is
a (k × 1) vector of
regression parameters.

With longitudinal data, we expect the eij to be correlated within
individuals. That is,

Cov (eij, eik) 6= 0
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Since the general linear model for each Yij is

Yij = β0 + β1Xij1 + . . .+ βk−1Xijk−1 + eij

= Xijβ + eij

if we introduce additional vector and matrix notation, the general linear
model for the set (or vector) of responses, Yi, can be written

Yi = Xiβ + ei

where Yi = (Yi1, Yi2, . . . , Yip)
′ denotes the (p× 1) vector of responses, and

Xi =


1 Xi11 Xi12 . . . Xi1,k−1

1 Xi21 Xi22 . . . Xi2,k−1

. . . . . . .

. . . . . . .
1 Xip1 Xip2 . . . Xip,k−1


denotes the (p× k) matrix of covariates.

211



Assumptions:

1. The individuals are a random sample from the population of interest.

2. The values of the dependent variable have a multivariate normal
distribution, with mean E (Yi) = Xiβ and covariance matrix Σ.

3. Observations from different individuals are independent, while repeated
measurements of the same individual are not assumed to be
independent.

4. If there are missing data they are assumed to be ‘ignorable’, i.e. MAR
or MCAR.
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Choosing a Covariance Structure

The choices of models for the mean and covariance are interdependent.

Since the residuals depend on the specification of the linear model for the
mean, we choose a covariance structure for a particular linear model.

Substantial changes in the linear model could lead to a different choice of
model for the covariance.

A balance needs to be struck:

With too little structure (e.g. unstructured), there may be too many
parameters to be estimated with the limited amount of data available.
This would leave too little information available for estimating β

⇒ weaker inferences concerning β.
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With too much structure (e.g compound symmetry), there is more
information available for estimating β. However, there is a potential risk
of model misspecification

⇒ apparently stronger, but potentially biased, inferences concerning β.
Thus far, we have encountered three covariance structures:

1) independence

2) compound symmetry

3) unstructured

Next, we consider a number of additional covariance models suitable for
longitudinal data.
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Autoregressive: AR(1)

The first-order autoregressive model has covariances of the form:

σjk = σ2ρ|j−k|

For example, with 4 occasions of measurement, the AR(1) covariance
matrix is as follows:


σ2 σ2ρ σ2ρ2 σ2ρ3

σ2ρ σ2 σ2ρ σ2ρ2

σ2ρ2 σ2ρ σ2 σ2ρ
σ2ρ3 σ2ρ2 σ2ρ σ2


Note that it has homogeneous variances and correlations that decline over
time.

This structure is best suited to equally-spaced measurements.
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Theoretical Justification:

The AR(1) covariance structure arises when the errors, eij are thought of
as coming from the following autoregressive process:

eij = ρeij−1 + wij

where wij ∼ N
(
0, σ2

{
1− ρ2

})
.

The process is initiated by ei0 ∼ N
(
0, σ2

)
.

Then,
V ar (eij) = σ2

and
Cov (eij, eik) = σ2ρ|j−k|
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The generic SAS code for fitting the AR(1) covariance model is as follows:

proc mixed;
class id trt time t;
model y=trt time time*trt / s chisq;
repeated t / type=ar(1) subject=id r rcorr;

Note: If the variances are not homogeneous, we can consider a
generalization of AR(1) that has the same correlation structure but allows
for heterogeneous variances: ARH(1):


σ2

1 σ1σ2ρ σ1σ3ρ
2 σ1σ4ρ

3

σ2σ1ρ σ2
2 σ2σ3ρ σ2σ4ρ

2

σ3σ1ρ
2 σ3σ2ρ σ2

3 σ3σ4ρ
σ4σ1ρ

3 σ4σ2ρ
2 σ4σ3ρ σ2

4


proc mixed;

class id trt time t;
model y=trt time time*trt / s chisq;
repeated t / type=arh(1) subject=id r rcorr;
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Example: Exercise Therapy Study

Subjects in an exercise therapy study were assigned to one of two
weightlifting programs.

In the first program (treatment 1), the number of repetitions was
increased as subjects became stronger. In the second program (treatment
2), the amount of weight was increased as subjects became stronger.

For illustration, we focus only on measures of strength taken at baseline
(day 0) and on days 4, 6, 8, and 12.
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data stren;
infile ‘g:\shared\bio226\strentwo.dat’;
input id trt t1 t2 t3 t4 t5 t6 t7;
time=0; y=t1; t=1; output;
time=4; y=t3; t=2; output;
time=6; y=t4; t=3; output;
time=8; y=t5; t=4; output;
time=12; y=t7; t=5; output;

run;

proc mixed data = stren;
class id trt time t;
model y=trt time trt*time / s chisq;
repeated t / type=un subject=id r rcorr;

run;

proc mixed data = stren;
class id trt time t;
model y=trt time trt*time / s chisq;
repeated t / type=ar(1) subject=id r rcorr;

run;

219



Unstructured Covariance Model:

Estimated R Matrix for id 1

Row col1 col2 col3 col4 col5

1 9.6683 10.1752 8.9741 9.8125 9.4070
2 10.1752 12.5501 11.0912 12.5801 11.9284
3 8.9741 11.0912 10.6417 11.6857 11.1007
4 9.8125 12.5801 11.686 13.9905 13.1213
5 9.4070 11.9284 11.1017 13.1213 13.9444

Estimated R Correlation Matrix for id 1

Row col1 col2 col3 col4 col5

1 1.0000 0.9237 0.8847 0.8437 0.8102
2 0.9237 1.0000 0.9597 0.9494 0.9017
3 0.8847 0.9597 1.0000 0.9577 0.9113
4 0.8437 0.9494 0.9577 1.0000 0.9394
5 0.8102 0.9017 0.9113 0.9394 1.0000

Fit Statistics

-2 Res Log Likelihood 597.3
AIC (smaller is better) 627.3
AICC (smaller is better) 630.6
BIC (smaller is better) 651.5
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AR(1) Covariance Model:

Estimated R Matrix for id 1

Row col1 col2 col3 col4 col5

1 11.8673 11.1573 10.4899 9.8623 9.2723
2 11.1573 11.8673 11.1573 10.4899 9.8623
3 10.4899 11.1573 11.8673 11.1573 10.4899
4 9.8623 10.4899 11.1573 11.8673 11.1573
5 9.2723 9.8623 10.4899 11.1573 11.8673

Estimated R Correlation Matrix for id 1

Row col1 col2 col3 col4 col5

1 1.0000 0.9402 0.8839 0.8311 0.7813
2 0.9402 1.0000 0.9402 0.8839 0.8311
3 0.8839 0.9402 1.0000 0.9402 0.8839
4 0.8311 0.8839 0.9402 1.0000 0.9402
5 0.7813 0.8311 0.8839 0.9402 1.0000

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

AR(1) id 0.9402
Residual 11.8673
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Fit Statistics

-2 Res Log Likelihood 621.1
AIC (smaller is better) 625.1
AICC (smaller is better) 625.1
BIC (smaller is better) 628.3

Test for AR(1) versus Unstructured Covariance:

-2 Res Log L
AR(1) 621.1
UN 597.3

⇒ -2*Res log likelihood ratio = 23.8, 13 d.f.
(p ≈ 0.036)

AR(1) model is not defensible.
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When the measurements are unequally spaced over time, with the
measurement occasions being at times tj, the exponentially decreasing
correlation form can be incorporated by taking

σjk = σ2ρ|tj−tk|

Note: This form is invariant under linear transformation of the time scale.
That is, if we replace tj by (a+ btj), the same form for the covariance
matrix holds.

This is sometimes referred to as the ‘exponential correlation model’, since

σjk = σ2ρ|tj−tk| = σ2 exp (−θ |tj − tk|)

where
ρ = exp (−θ) (for θ > 0)
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The generic SAS code for fitting the ‘exponential correlation model’ is as
follows:

proc mixed;
class id trt time t;
model y=trt time time*trt / s chisq;
repeated t / type=sp(exp)(ctime)

subject=id r rcorr;

The option:

ype=sp(exp)(ctime)

is used to specify the exponential correlation structure, with ctime as the
variable used to calculate the time-separation between the measurement
occasions.
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Example: Exercise Therapy Study

Recall that the 5 measurement occasions (0, 4, 6, 8, and 12) are unequally
spaced.

data stren;
infile ‘g:\shared\bio226\strentwo.dat’;
input id trt t1 t2 t3 t4 t5 t6 t7;
time=0; ctime=0; y=t1; t=1; output;
time=4; ctime=4; y=t3; t=2; output;
time=6; ctime=6; y=t4; t=3; output;
time=8; ctime=8; y=t5; t=4; output;
time=12; ctime=12; y=t7; t=5; output;

run;

proc mixed data = stren;
class id trt time t;
model y=trt time trt*time / s chisq;
repeated t / type=sp(exp)(ctime) subject=id r rcorr;

run;
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Exponential Covariance Model:

Estimated R Matrix for id 1

Row col1 col2 col3 col4 col5

1 11.8738 10.8875 10.4255 9.9832 9.1539
2 10.8875 11.8738 11.3700 10.8875 9.9832
3 10.4255 11.3700 11.8738 11.3700 10.4255
4 9.9832 10.8875 11.3700 11.8738 10.8875
5 9.1539 9.9832 10.4255 10.8875 11.8738

Estimated R Correlation Matrix for id 1

Row col1 col2 col3 col4 col5

1 1.0000 0.9169 0.8780 0.8408 0.7709
2 0.9169 1.0000 0.9576 0.9169 0.8408
3 0.8780 0.9576 1.0000 0.9576 0.8780
4 0.8408 0.9169 0.9576 1.0000 0.9169
5 0.7709 0.8408 0.8780 0.9169 1.0000

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

SP(EXP) id 46.1262
Residual 11.8738

Note: SAS estimates 1/θ rather than θ. Thus, estimate of
ρ = exp {−1/ (46.13)} = 0.97856
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Fit Statistics

-2 Res Log Likelihood 618.5
AIC (smaller is better) 622.5
AICC (smaller is better) 622.6
BIC (smaller is better) 625.8

Test for Exponential versus Unstructured Covariance:

-2 Res Log L
EXP 618.5
UN 597.3

⇒ -2*Res log likelihood ratio = 21.2, 13 d.f.
(p ≈ 0.086)

Exponential correlation model is defensible.
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Results for Exponential Correlation Model:

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square Pr > ChiSq

trt 1 35 1.70 0.1977
time 4 128 28.18 <.0001
trt*time 4 128 3.57 0.4679

We cannot reject the null hypothesis of no treatment by time interaction.
=⇒ profiles of means are similar in the two groups.
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GENERAL LINEAR MIXED EFFECTS MODEL

Next, we consider mixed models for longitudinal data.

Note: A mixed model is one that contains both fixed and random effects.

Mixed models for longitudinal data explicitly identify individual (random
effects) and population characteristics (fixed effects).

Mixed models are very flexible since they can accommodate any degree of
imbalance in the data. That is, we do not necessarily require the same
number of observations on each subject or that the measurements be
taken at the same times.

Also, the use of random effects allows us to model the covariance structure
as a continuous function of time.
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Recall: Compound Symmetry Model

Assumes the correlation between repeated measurements arises because
each subject has an underlying level of response which persists over time.

This subject effect is treated as random and the mixed model is

Yij = Xijβ + bi + eij

= (β0 + bi) + β1Xij1 + . . . βpXijp + eij

The response for the ith subject is assumed to differ from the population
mean, Xijβ, by a subject effect, bi, and a within-subject measurement
error, eij.
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Compound Symmetry (or Random Intercepts)
Model:
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If var (bi) = σ2
b and var (eij) = σ2 the covariance matrix of the repeated

measurements has the compound symmetry form:
σ2
b + σ2 σ2

b σ2
b . . . σ2

b

σ2
b σ2

b + σ2 σ2
b . . . σ2

b

σ2
b σ2

b σ2
b + σ2 . . . σ2

b

. . . . . . .

. . . . . . .
σ2
b σ2

b σ2
b . . . σ2

b + σ2


Note: The introduction of a random subject effect, bi, induces correlation
among the repeated measurements.

The compound symmetry model is the simplest possible example of a
mixed model.

However, we can easily generalize these ideas.
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Random Intercepts and Slopes Model:

Time

R
es

po
ns

e

0 1 2 3 4 5

o o

o o

o

o o

o o

o o

o
o o

o o
o

o o
o

o
o

Subject 1

Subject 2

233



Random Intercepts and Slopes Model:

Consider the following model with intercepts and slopes that vary
randomly among subjects.

For the ith subject at the jth measurement occasion

Yij = β0 + β1tij + bi0 + bi1tij + eij

(Note: we are using double subscripting here)
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Linear Mixed Model
Notation: Suppose we have n individuals on which we have collected pi
repeated observations at times tij.

Consider the mixed model

Yi = Xiβ + Zibi + ei

where β is a (k × 1) vector of fixed effects;

bi is a (q × 1) vector of random effects and

bi ∼ N (0,G);

Xi is a (pi × k) matrix of covariates;

Zi is a (pi × q) matrix of covariates (usually the columns

of Zi are a subset of the columns of Xi and q < k);

ei is a (pi × 1) vector of errors and ei ∼ N (0,Ri).
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Example

Consider again the random intercepts and slopes model:

Yij = β0 + β1tij + bi0 + bi1tij + eij

In matrix form this can be represented as

Yi = Xiβ + Zibi + ei

where

Xi = Zi =


1 ti1
1 ti2
. .
. .
1 tipi
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Let var (bi0) = g11, var (bi1) = g22, and cov (bi0, bi1) = g12.

These are the three unique elements of the (2× 2) covariance matrix G.

We assume that var (eij) = σ2. Thus, Ri = σ2I.

Then it can be shown that

var (Yij) = g11 + 2tijg12 + g22t
2
ij + σ2

and

cov (Yij, Yik) = g11 + (tij + tik) g12 + g22tijtik

Note: Covariance is expressed as a function of time.

Covariate effects (e.g. due to treatment) can be expressed by allowing the
mean values of the intercept and slope to depend upon the covariates (e.g.
by allowing them to differ across the treatment groups).
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In the mixed model
Yi = Xiβ + Zibi + ei

Ri = var (ei) describes the covariance among observations when we focus
on the response profile of a specific individual.

That is, it is the covariance of the ith subject’s deviations from his/her
mean profile Xiβ + Zibi.

Usually, it is assumed that Ri = σ2I, where I is a (pi × pi) identity matrix

⇒ ‘conditional independence assumption’

Alternatively, a structured model for Ri could be assumed, e.g. AR(1).
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In the mixed model

Yi = Xiβ + Zibi + ei

The vector of regression parameters β are the fixed effects, which are
assumed to be the same for all individuals.

These regression parameters have population-averaged interpretation (e.g.
in terms of changes in the mean response, averaged over individuals).

Although the conditional mean of Yi, given bi, is

E (Yi|bi) = Xiβ + Zibi

note that the marginal or population-averaged mean of Yi is

E (Yi) = Xiβ
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In contrast to β, the vector bi is comprised of subject-specific regression
coefficients.

These are the random effects and the bi have a distribution (usually, but
not necessarily, assumed to be normal).

Combined with the fixed effects, these describe the mean response profile
of a specific individual.

That is, the mean response profile for the ith individual is

Xiβ + Zibi.
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In the mixed model
Yi = Xiβ + Zibi + ei

recall that
E (Yi|bi) = Xiβ + Zibi

and
E (Yi) = Xiβ.

Similarly,
var (Yi|bi) = var (ei) = Ri

and

var (Yi) = var (Zibi) + var (ei)

= ZiGZ′i + Ri

Of note, even if Ri = σ2I,

var (Yi) = ZiGZ′i + σ2I

is not a diagonal matrix.
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Thus, the introduction of random effects, bi, induces correlation
(marginally) among the Yi.

That is,
var (Yi) = Σi = ZiGZ′i + Ri

which, in general, has non-zero off-diagonal elements.

Finally, note that var (Yi) is described in terms of a set of covariance
parameters, some defining G and some defining Ri.
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Example: Exercise Therapy Study

Consider a model with intercepts and slopes that vary randomly among
subjects, and which allows the mean values of the intercept and slope to
differ in the two treatment groups.

To fit this model, use the following SAS code:

proc mixed data = stren;
class id trt;
model y=trt time time*trt / s chisq;
random intercept time / type=un sub=id g;
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Random Intercepts and Slopes Model:

Estimated G Matrix

Effect id col1 col2

Intercept 1 9.5469 0.05331
time 1 0.0533 0.02665

Residual: 0.6862

Fit Statistics

-2 Res Log Likelihood 632.0
AIC (smaller is better) 640.0
AICC (smaller is better) 640.2
BIC (smaller is better) 646.4

Solution for Fixed Effects

Standard
Effect trt Estimate Error DF t Value Pr > |t|
Intercept 81.2396 0.6910 35 117.57 <.0001
trt 1 -1.2349 1.0500 99 -1.18 0.2424
trt 2 0 . . . .
time 0.1729 0.0427 35 4.05 0.0003
time*trt 1 -0.0377 0.0637 99 -0.59 0.5548
time*trt 2 0 . . . .
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Recall:

var (Yi) = var (Zibi) + var (ei)

= ZiGZ′i + Ri

Given estimates of G: [
9.54695 0.05331
0.05331 0.02665

]

and of Ri = σ2I: (0.6862)I,

and with

Zi =


1 0
1 4
1 6
1 8
1 12
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We can obtain the following estimate of var (Yi):
10.23 9.76 9.87 9.97 10.19
9.76 11.09 10.72 11.04 11.68
9.87 10.72 11.83 11.57 12.43
9.97 11.04 11.57 12.79 13.17

10.19 11.68 12.43 13.17 15.35


The corresponding correlation matrix is:

1.000 0.916 0.897 0.872 0.813
0.916 1.000 0.936 0.927 0.895
0.897 0.936 1.000 0.941 0.922
0.872 0.927 0.941 1.000 0.940
0.813 0.895 0.922 0.940 1.000


These can be obtained using the following option in PROC MIXED:
random intercept time / type=un sub=id g v vcorr;
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Next, consider the model with random intercepts only (equivalent to
compound symmetry).

To fit this model, use the following SAS code:

proc mixed data = stren;
class id trt;
model y=trt time time*trt / s chisq;
random intercept / type=un sub=id g;

Alternatively, we could fit this model by specifying a compound symmetry
model for Ri and assume no random effects:

proc mixed data = stren;
class id trt t;
model y=trt time time*trt / s chisq;
repeated t / type=cs sub=id r;
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Random Intercepts Model:

Estimated G Matrix

Effect id col1

Intercept 1 10.8506

Residual: 1.1579

Fit Statistics

-2 Res Log Likelihood 660.4
AIC (smaller is better) 664.4
AICC (smaller is better) 664.5
BIC (smaller is better) 667.6

Solution for Fixed Effects

Standard
Effect trt Estimate Error DF t Value Pr > |t|
Intercept 81.2895 0.7445 35 109.18 <.0001
trt 1 -1.2805 1.1314 134 -1.13 0.2598
trt 2 0 . . . .
time 0.1605 0.02887 134 5.56 <.0001
time*trt 1 -0.0267 0.04212 134 -0.63 0.5274
time*trt 2 0 . . . .
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However, in current setting,

-2 Res Log L

Random Intercepts 660.4
Random Intercepts & Slopes 632.0

⇒ -2*Res log likelihood ratio = 28.4, 2 d.f. (p < 0.0001)

So, in this case, there is no doubt that the Random Intercepts (or
compound symmetry) model is not defensible.

We will revisit this test later when we discuss AIC.
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Prediction of Random Effects

In most applications, inference is focused on the fixed effects, β.

However, in some studies we may want to predict (or “estimate”)
subject-specific response profiles.

Technically, because the bi are random, we customarily talk of
“predicting” the random effects rather than “estimating” them.

Using maximum likelihood, the prediction of bi, say b̂i, is given by:

GZ′iΣ
−1
i (Yi −Xiβ̂),

where Σi = var (Yi) = ZiGZ′i + Ri.

Aside: This is known as the Best Linear Unbiased Predictor (or BLUP).
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When the unknown covariance parameters are replaced by their ML or
REML estimates, the resulting predictor,

b̂i = ĜZ′iΣ̂
−1
i (Yi −Xiβ̂),

is often referred to as the “Empirical BLUP” or the “Empirical Bayes”
(EB) estimator.

Furthermore, it can be shown that

var(b̂i) = GZ′iΣ
−1
i ZiG−GZ′iΣ

−1
i Xi(

n∑
i=1

X′iΣ
−1
i Xi)

−1X′iΣ
−1
i ZiG
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Finally, the ith subject’s predicted response profile is,

Ŷi = Xiβ̂ + Zib̂i
= Xiβ̂ + ZiĜZ′iΣ̂

−1
i (Yi −Xiβ̂)

= (R̂iΣ̂−1
i )Xiβ̂ + (I− R̂iΣ̂−1

i )Yi

That is, the ith subject’s predicted response profile is a weighted
combination of the population-averaged mean response profile, Xiβ̂, and
the ith subject’s observed response profile Yi.
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Note that the subject’s predicted response profile is “shrunk” towards the
population-averaged mean response profile.

The amount of “shrinkage” depends on the relative magnitude of Ri and
Σi.

Note that Ri characterizes the within-subject variability, while Σi

incorporates both within-subject and between-subject sources of
variability.

As a result, when Ri is “large”, and the within-subject variability is
greater than the between-subject variability, more weight is given to Xiβ̂,
the population-averaged mean response profile.

When the between-subject variability is greater than the within-subject
variability, more weight is given to the ith subject’s observed data Yi.
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SAS CODE

The Empirical Bayes (EB) estimates, b̂i, can be obtained by using the
following option on the RANDOM statement in PROC MIXED:

random intercept time / type=un sub=id s;

Alternatively, a subject’s predicted response profile,

Ŷi = Xiβ̂ + Zib̂i,

can be obtained by using the following option on the MODEL statement:
model y = trt time trt*time / outp=SAS-data-set;
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Example: Exercise Therapy Study

Consider a model with intercepts and slopes that vary randomly among
subjects, and which allows the mean values of the intercept and slope to
differ in the two treatment groups.

To fit this model, use the following SAS code:

proc mixed data = stren;
class id trt;
model y=trt time time*trt / s chisq;
random intercept time / type=un sub=id g s;
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Empirical Bayes Estimates of bi:

Solution for Random Effects

Std Err
Effect id Estimate Pred t Value Pr > |t|
Intercept 1 -1.0111 0.9621 -1.05 0.2959
time 1 -0.03812 0.08670 -0.37 0.7144
Intercept 2 3.3772 0.9621 1.07 0.0007
time 2 0.1604 0.08670 1.85 0.0672

. . . . . .

. . . . . .

. . . . . .
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Example: Exercise Therapy Study

Next, we consider how to obtain a subject’s predicted response profile.

proc mixed data = stren;
class id trt;
model y=trt time time*trt / s chisq outp=predict;
random intercept time / type=un sub=id g s;

proc print data = predict;
var id trt time y Pred StdErrPred Resid;
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Predicted Response Profiles

StdErr
id trt time y Pred Pred Resid

1 1 0 79 78.9937 0.59729 0.00634
1 1 4 79 79.4071 0.39785 -0.40707
1 1 6 80 79.6138 0.36807 0.38623
1 1 8 80 79.8205 0.40451 0.17952
1 1 12 80 80.2339 0.61057 -0.23389
2 1 0 83 83.3820 0.59729 -0.38202
2 1 4 85 84.5644 0.39785 0.43562
2 1 6 85 85.1556 0.36807 -0.15557
2 1 8 86 85.7468 0.40451 0.25325
2 1 12 87 86.9291 0.61057 0.07088
. . . . . . .
. . . . . . .
. . . . . . .
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GROWTH CURVE MODELS

In this lecture we discuss growth curve models. These are simply random
coefficient (e.g. random intercepts and slopes) models that also allow for
the possibility that subjects may be drawn from different groups.

As we shall see later, growth curve models are simply a special case of the
mixed effects models.

In order to motivate the methods, consider a simple example from an
animal study designed to compare clearance of iron particles from the
lung and liver.
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Example:

Feldman (1988) describes a study in which iron oxide particles were administered to four
rats by intravenous injection and to four other rats by tracheal installation.

The injected particles were taken up by liver endothelial cells and the installed particles
by lung macrophages.

Each rat was followed for 30 days, during which time the quantity of iron oxide
remaining in the lung was measured by magnetometry.

The iron oxide content declined linearly on the logarithmic scale.

The goal of the study was to compare the rate of particle clearance by liver endothelial
cells and by lung macrophages.

Measurements during follow-up were expressed as a percentage of the baseline value,
with the baseline value constrained to equal 100%.

Thus, in the analysis we will want to drop the baseline value.
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Two-Stage Model

Growth curve models can be motivated in terms of a two-stage model. In
the two-stage model, we assume

1. A straight line (or curve) fits the observed responses for each subject
(first stage)

2. A regression model relating the mean of the individual intercepts and
slopes to subject-specific covariates (second stage)
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More formally, if Yij is the response of the ith individual measured at time
tij, we assume

Stage 1:
Yij = vi1 + vi2tij + eij

where vi1 and vi2 are parameters specific to the ith subject and the errors,
eij, are implicitly assumed to be independent within a subject.

Stage 2: In the second stage, the intercepts and the slopes are regressed on
other covariates:

vi1 = α1 + Xiβ1 + εi1

vi2 = α2 + Xiβ2 + εi2
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Two-Stage Analysis - “NIH Method”

One classic approach to the analysis of such data is known as two-stage or
two-step analysis.

It is sometimes called the “NIH Method” because it was popularized by
statisticians working at NIH.

In the two-stage method, we simply fit a straight line (or curve) to the
response data for each subject (first stage), and then regress the estimates
of the individual intercepts and slopes on subject-specific covariates
(second stage).

One of the attractions of this method is that it is very easy to perform
using existing statistical software for linear regression.

We can illustrate the method by considering a two-stage analysis of
Feldman’s clearance data.

263



STRUCTURE OF THE DATASET

ORGAN ID DAYS CFP LOGCFP

lung 1 3 102 2.00860
. . . . .
. . . . .
. . . . .

SAS CODE

filename rats ‘g:\shared\bio226\rat.dat’;

data rats;
infile rats;
input organ $ id days cfp logcfp;
if (days=0) then delete;

run;
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Two-Stage Analysis
Stage 1:

proc reg data=rats outest=coeffs noprint;
by id organ;
model logcfp=days;

run;

Note: This creates the following two variables that are of interest, intercept and days
(the estimated intercepts and slopes respectively).

proc print data=coeffs;
var id organ intercept days;

run;
OBS ID ORGAN INTERCEPT DAYS

1 1 lung 2.05235 -0.017569
2 2 lung 1.97683 -0.012858
3 3 lung 1.99249 -0.017565
4 4 lung 2.12824 -0.023480
5 26 liver 2.06173 -0.011100
6 28 liver 2.05379 -0.011425
7 30 liver 1.95025 -0.008306
8 31 liver 2.12560 -0.018886
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Stage 2:

proc glm data = coeffs;
class organ;
model intercept=organ / solution;
title ‘ANOVA for the Intercepts’;

run;

proc glm data = coeffs;
class organ;
model days=organ / solution;
title ‘ANOVA for the Slopes’;

run;

ANOVA for the Intercepts

General Linear Models Procedure

Dependent Variable: Intercept

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.00021482 0.00021482 0.04 0.8425
Error 6 0.02995984 0.00499331
Total 7 0.03017466

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 2.037476922 0.03533167 57.67 <.0001
Organ liver 0.010363771 0.04996652 0.21 0.8425
Organ lung 0.000000000 . . .
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ANOVA for the Slopes

General Linear Models Procedure

Dependent Variable: days

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.00005916 0.00005916 3.00 0.1339
Error 6 0.00011825 0.00001971
Total 7 0.00017741

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -.0178678950 0.00221968 -8.05 0.0002
Organ liver 0.0054387390 0.00313910 1.73 0.1339

268



Estimated slope in the lung group is -0.0178, representing a half time for
clearance of 16.9 days (or log10(0.5)

−0.0178 ).

Estimated slope in the liver group is -0.0124 (-0.0178 + 0.0054),
representing a half time for clearance of 24.2 days.

The mean slopes in the two groups are not discernibly different (p = .13).

The mean intercepts do not differ significantly in the two groups
(p = .84), as would be expected given the normalization of each animal’s
data to baseline.
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In summary, the two-stage analysis is easy to understand and nearly
efficient when the dataset is balanced and complete.

It is somewhat less attractive when the number and timing of observations
varies among subjects, because it does not take proper account of the
weighting.

In contrast, we can consider the mixed effects model corresponding to the
two-stage model, and obtain efficient (more precise) estimates of the
regression coefficients.
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Mixed Effects Model Representation of
Growth Curve Model

We can develop a mixed effects model in two stages corresponding to the two-stage
model:

Stage 1: Yij = vi1 + vi2tij + eij

where vi1 is the intercept for the ith subject, vi2 is the slope for the ith subject, and
errors, eij, are assumed to be independent and normally distributed around the
individual’s regression line, that is, eij ∼ N

(
0, σ2

)
.

Stage 2:

Assume that the intercept and slope, vi1 and vi2, are random and have a joint
multivariate normal distribution, with mean dependent on covariates (e.g. the organ
studied):

vi1 = β0 + β1 Organ + εi1

vi2 = β2 + β3 Organ + εi2

Also, let var (εi1) = g11, cov (εi1, εi2) = g12, var (εi2) = g22. Typically, it is assumed
that the variances and covariance do not depend on covariates.
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If we substitute the expressions for vi1 and vi2 into the equation in stage
1, we obtain

Yij = β0 + β1 Organ + β2tij + β3 Organ × tij
+εi1 + εi2tij + eij

The first four terms give the regression model implied by the two-stage
model.

The covariates are organ, days, and organ*days.

The last three terms are the error terms in the growth curve model, and it
can be shown that

var (Yij) = g11 + 2tijg12 + t2ijg22 + σ2

= (1 tij) G (1 tij)
′ + σ2I

This model can be fit using the random statement in PROC MIXED.
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SAS CODE FOR GROWTH CURVE MODEL

filename rats ‘g:\shared\bio226\rat.dat’;

data rats;
infile rats;
input organ $ id days cfp logcfp;
if (days=0) then delete;

run;

proc mixed data = rats;
class id organ;
model logcfp=days organ days*organ / s chisq;
random intercept days /

type=un subject=id g;
title ‘Random Slopes and Intercepts’;

run;
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Random Slopes and Intercepts

Estimated G Matrix

Parameter ID Row col1 col2

Intercept 1 1 0.002851 -0.00015
days 1 2 -0.00015 9.65E-6

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

UN(1,1) ID 0.002851
UN(2,1) ID -0.00015
UN(2,2) ID 9.65E-6
Residual 0.003155

Fit Statistics

-2 Res Log Likelihood -111.2
AIC (smaller is better) -103.2
AICC (smaller is better) -102.3
BIC (smaller is better) -102.9
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Random Slopes and Intercepts
Solution for Fixed Effects

Standard
Effect organ Estimate Error DF t Value Pr > |t|
Intercept 2.0375 0.03337 6 61.05 <.0001
days -0.01785 0.001913 6 -9.33 <.0001
organ liver 0.003814 0.04741 37 0.08 0.9363
organ lung 0 . . . .
days*organ liver 0.006232 0.002760 37 2.26 .0299
days*organ lung 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square Pr > ChiSq

days 1 6 114.05 <.0001
organ 1 37 0.01 0.9359
days*organ 1 37 5.10 0.0239

Results suggest that mean clearance of foreign particles is faster from the
lung.
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COMPARISON OF RESULTS

Two-Stage GC
(Mixed Effects)

Intercept 2.0375 (.0353) 2.0375 (.0334)
Day -0.0178 (.0022) -0.0179 (.0019)
Organ 0.0104 (.0450) 0.0038 (.0474)
Organ*Time 0.0054 (.0031) 0.0062 (.0027)
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Summary

The two-stage method is less attractive when the number and timing of
observations varies among subjects, because it does not take proper
account of the weighting.

Also, note that the two-stage formulation of the growth curve model
imposes certain restrictions and structure on the covariates.

That is, in the two-stage approach covariates at the first stage (except for
the intercept) must be time-varying, while covariates at the second stage
must be time-invariant.

In contrast, in the mixed effects model the only restriction is that the
columns of Zi are a subset of the columns of Xi.
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SELECTION OF MODEL FOR COVARIANCE

For a given linear model, how can we decide which model for the
covariance to use in the ‘final’ analysis?

There are two general approaches for comparing models for the covariance
matrix:

1. Restricted ML (REML) when the models are nested.

2. Information criteria when they are not nested:

• Akaike’s Information Criterion (AIC)
• Schwarz’s Bayesian Information Criterion (BIC)
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Comparing Nested Models for the Covariance

The REML likelihood provides a measure of the goodness of fit of an
assumed model for the covariance.

A standard approach for comparing two nested models is via the
likelihood-ratio test.

Take twice the difference in maximized log likelihoods and compare to the
chi-squared distribution (with df equal to the difference in number of
covariance parameters).

In many settings the likelihood-ratio test is a valid method for comparing
nested model.

However, here it may not always be valid due to the nature of the null
hypothesis.
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Technically, the reason for the problem is that the LRT may be testing a
null hypothesis that is “on the boundary of the parameter space” (e.g.,
testing that a variance component is zero).

As a result, the usual conditions required for classical likelihood theory
are no longer met.

As a consequence, the usual null distribution for the LRT may no longer
be valid.

Instead, the null distribution for the LRT may be a mixture of chi-squared
distributions.
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Illustration
Suppose: Yij = β0 + β1xij + bi0 + εij; var(bi0) = g11.
To test H0 : g11 = 0 versus HA : g11 > 0, the asymptotic null distribution
of the standard LRT is not a chi-squared distribution with 1 df.

Instead, it is an equally-weighted mixture of chi-squared distributions
with 0 and 1 df.

Similarly, to test
H0: random intercepts model
H0: random intercepts and slopes model,

the asymptotic null distribution of the standard LRT is not a chi-squared
distribution with 2 df.

Instead, it is an equally-weighted mixture of chi-squared distributions
with 1 and 2 df.

Note that if the classical null distribution is used instead, the resulting
p-value will be overestimated =⇒ Model selected for covariance is too
parsimonious.
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What is the lesson to be learned here?

Comparing nested models for covariance can be a non-standard problem.

The reason is that the null hypothesis is often on the boundary of
parameter space.

As a consequence, the usual null distributions may no longer be valid.

If the usual null distribution is used the resulting p-value will be
overestimated.

Thus, in general, ignoring this problem can lead to selection of model for
covariance that is too simple.
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Comparing Non-Nested, or Non-standard Nested,
Models for the Covariance

For non-standard nested comparisons or when the models are non-nested,
they can be compared in terms of Information Criteria that effectively
extract a penalty for the estimation of an additional parameter.

The two most widely used criteria are Akaike’s Information Criterion
(AIC) and Schwarz’s Bayesian Information Criterion (BIC).

Akaike’s Information Criterion (AIC) is defined as

AIC = Log L− c
where log L is either the maximized ML or REML log likelihood and c is
the number of covariance parameters.

With this definition of AIC, it can be used to compare models with the
same fixed effects but different covariance structures.

The model with the largest AIC is deemed best.
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Schwarz’s Bayesian Information Criterion (BIC) is defined as

BIC = Log L− c
2 ln (n∗)

where log L is either the maximized ML or REML log likelihood, c is the
number of covariance parameters, and n∗ is the number of effective
subjects, n, in the case of ML and n− k in the case of REML estimation.

When n∗ is relatively large, BIC extracts a substantial penalty for the
estimation of each additional parameter.

In general, comparing non-nested models using BIC entails a high risk of
selecting a model that is too simple for the data at hand.
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Note that the models for the covariance structure have the following
hierarchical relationship:
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Thus, AR(1) and SP(EXP) have hierarchical relationships to
independence and unstructured models, but not to the CS or mixed
effects models.

Since the exponential correlation model and the random intercepts and
slopes model do not have a hierarchical relationship (i.e. they are not
nested models), they cannot be compared in terms of a likelihood ratio
test.

Instead we can compare the models in terms of their AIC.

Note: SAS prints out a slightly different definition of AIC to make it
comparable to -2 Res Log L:

AIC = −2LogL+ 2c

and reminds us of this by printing “(smaller is better)”.
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Example: Exercise Therapy Study

Consider a model for the mean that assumes a linear trend, a treatment
effect, and their interaction. We can fit a variety of models for the
covariance. SAS gives the following AIC’s (smaller is better):

Model AIC

CS (Random Intercepts) 664.4
AR(1) 639.7
SP(EXP) 636.7
Random Intercepts and Slopes 640.0
Unstructured 642.2

Likelihood ratio tests (versus unstructured covariance) suggest using either
the exponential correlation or the random intercepts and slopes model.

On the basis of AIC, the exponential correlation model is the preferred
model.
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EMPIRICAL VARIANCE ESTIMATION

We have focussed on regression models for longitudinal data where the
primary interest is in making inference about the regression parameters β.

For statistical inference about β we need

(i) an estimate, β̂

(ii) estimated standard error, se(β̂)

So far, we have made inferences about β using standard errors obtained
under an assumed model for the covariance structure.

This approach is potentially problematic if the assumed covariance has
been mis-specified.
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How might the covariance be mis-specified?

For example, compound symmetry might be assumed but the correlations
in fact decline over time.

Alternatively, an unstructured covariance might be assumed but the
covariances also depend upon the treatment group.

If the assumed covariance has been mis-specified, we can correct the
standard errors by using ‘empirical’ or so-called ‘robust’ variances.
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Recall, the REML estimator of β is given by

β̂ =

[
n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1 n∑
i=1

(
X′iΣ̂

−1
Yi

)

where Σ̂ is the REML estimate of Σ.

It has variance matrix,

var(β̂) =[
n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1 n∑
i=1

(
X′iΣ̂

−1
var (Yi) Σ̂

−1
Xi

)[ n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1
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If var(Yi) is replaced by Σ̂, the REML estimate of Σ, var(β̂) can be
estimated by [

n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1

However, if the covariance has been mis-specified then an alternative
estimator for var (Yi) is needed.

The empirical or so-called robust variance of β̂ is obtained by using

V̂i =
(
Yi −Xiβ̂

)(
Yi −Xiβ̂

)′

as an estimate of var (Yi).
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Thus, the empirical variance of β̂ is estimated by

[
n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1 n∑
i=1

(
X′iΣ̂

−1
V̂iΣ̂

−1
Xi

)[ n∑
i=1

(
X′iΣ̂

−1
Xi

)]−1

This empirical variance estimator is also known as the ‘sandwich
estimator’.

The remarkable thing about the empirical estimator of var(β̂) is that it
provides a consistent estimator of the variance even when the model for
the covariance matrix has been misspecified.

That is, in large samples the empirical variance estimator yields correct
standard errors.
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In general, its use should be confined to cases where n (number of
individuals) is relatively large and p (number of measurements) is
relatively small.

The empirical variance estimator may not be appropriate when there is
severe imbalance in the data.

In summary, (with large samples) the following procedure will produce
valid estimates of the regression coefficients and their standard errors:

1. Choose a ‘working’ covariance matrix of some convenient form.

2. Estimate the regression coefficients under the assumed working
covariance matrix.

3. Estimate the standard errors using the empirical variance estimator.
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Why not be a clever ostrich?
Why not simply ignore the potential correlation among repeated measures
(i.e., put head in sand) and assume an independence ‘working’ covariance
matrix. Then, obtain correct standard errors using the empirical variance
estimator.

Why should we bother to explicitly model the covariance?

Reasons:

1. Efficiency: The optimal (most precise) estimator of β uses the true
var (Yi). Given sufficient data, we can attempt to estimate var (Yi).

2. When n (number of individuals) is not large relative to p (number of
measurements) the empirical variance estimator is not recommended.

3. Missing values: The empirical variance estimator uses the replications
across individuals to estimate the covariance structure. This becomes
problematic when there are missing data or when the times of
measurement are not common.

In general, it is advantageous to model the covariance.
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Example: Exercise Therapy Study

Recall that the 5 measurement occasions (0, 4, 6, 8, and 12) are unequally
spaced.

The SAS code for fitting the ‘exponential correlation model’ with
empirical variances is as follows:

proc mixed data=stren empirical;
class id trt t;
model y=trt time trt*time / s chisq;
repeated t / type=sp(exp)(ctime)

subject=id r rcorr;
run;
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Exponential Covariance Model with Empirical Variances

Fit Statistics

-2 Res Log Likelihood 632.7
AIC (smaller is better) 636.7
AICC (smaller is better) 636.8
BIC (smaller is better) 639.9

Note: Estimated covariance parameters and fixed effects (and Fit
Statistics) will be identical to the analysis without empirical variances.

Solution for Fixed Effects

Standard
Effect trt Estimate Error t Value Pr > |t|
Intercept 81.0709 0.6624 122.39 <.0001
trt 1 -1.3425 1.0043 -1.34 0.1899
time 0.1694 0.0359 4.72 <.0001
time*trt 1 -0.0330 0.0625 -0.53 0.5976
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Comparing model-based and empirical standard errors

Model-based Empirical
Effect Estimate Std Error Std Error

INTERCEPT 81.0709 0.7542 0.6624
TRT -1.3425 1.1468 1.0043
TIME 0.1694 0.0456 0.0359
TIME*TRT -0.0330 0.0676 0.0625

There are some discernible differences between the model-based and
empirical standard errors.

These differences suggest that the exponential correlation model may not
be the best possible approximation to var (Yi).
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MISSING DATA AND DROPOUT

Missing data arise in longitudinal studies whenever one or more of the
sequences of measurements are incomplete, in the sense that some
intended measurements are not obtained.

Let Y denote the complete response vector which can be partitioned into
two sub-vectors:

(i) Y(o) the measurements observed

(ii) Y(m) the measurements that are missing

If there were no missing data, we would have observed the complete
response vector Y.

Instead, we get to observe Y(o).
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The main problem that arises with missing data is that the distribution of
the observed data may not be the same as the distribution of the complete
data.

Consider the following simple illustration:

Suppose we intend to measure subjects at 6 months (Y1) and 12 months
(Y2) post treatment.

All of the subjects return for measurement at 6 months, but many do not
return at 12 months.

If subjects fail to return for measurement at 12 months because they are
not well (say, values of Y2 are low), then the distribution of observed Y2’s
will be positively skewed compared to the distribution of Y2’s in the
population of interest.
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In general, the situation may often be quite complex, with some
missingness unrelated to either the observed or unobserved response, some
related to the observed, some related to the unobserved, and some to both.

A particular pattern of missingness that is common in longitudinal studies
is ‘dropout’ or ‘attrition’. This is where an individual is observed from
baseline up until a certain point in time, thereafter no more measurements
are made.

Possible reasons for dropout:

1. Recovery

2. Lack of improvement or failure

3. Undesirable side effects

4. External reasons unrelated to specific treatment or outcome

5. Death
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Examples

In clinical trials, missing data can arise from a variety of circumstances:

a) Late entrants: If the study has staggered entry, at any interim
analysis some individuals may have only partial response data. Usually,
this sort of missing data does not introduce any bias.

b) Dropout: Individuals may drop out of a clinical trial because of side
effects or lack of efficacy. Usually, this type of missing data is of
concern, especially if dropout is due to lack of efficacy. Dropout due to
lack of efficacy suggests that those who drop out come from the lower
end of the spectrum. Dropout due to side effects may or may not be a
problem, depending upon the relationship between side effects and the
outcome of interest.
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In order to obtain valid inferences from incomplete data the mechanism
(probability model) producing the missing observations must be
considered.

A hierarchy of three different types of missing data mechanisms can be
distinguished:

1) Data are missing completely at random (MCAR) when the probability
that an individual value will be missing is independent of Y(o) and
Y(m).

2) Data are missing at random (MAR) when the probability that an
individual value will be missing is independent of Y(m) (but may
depend on Y(o) ).

3) Missing data are nonignorable when the probability that an individual
value will be missing depends on Y(m).

Note: Under assumptions 1) and 2), the missing data mechanism is often
referred to as being ‘ignorable’.
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If missingness depends only on X, then technically it is MCAR. However,
sometimes this is referred to as covariate dependent non-response.

Thus, in general, if non-response depends on covariates, X, it is harmless
and the same as MCAR provided you always condition on the covariates
(i.e., incorporate the covariate in the analysis). This type of missingness is
only a problem if you do not condition on X.

Example: Consider the case where missingness depends on treatment
group. Then the observed means in each treatment group are unbiased
estimates of the population means.

However, the marginal response mean, averaged over the treatment
groups, is not unbiased for the corresponding mean in the population (the
latter, though, is usually not of subject-matter interest).
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Sometimes it may be necessary to introduce additional covariates, or
stratifying variables, into the analysis to control for potential bias due to
missingness.

Example: Suppose the response Y is some measure of health, and X1 is
an indicator of treatment, and X2 is an indicator of side-effects. Suppose
missingness depends on side-effects.

If side-effects and outcome are uncorrelated, then there will be no bias.

If side-effects and outcome are correlated, then there will be bias unless
you stratify the analysis on both treatment and side-effects (analogous to
confounding).
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Methods of Handling Missing Data

1) Complete Case Methods: These methods omit all cases with
missing values at any measurement occasion.

Drawbacks:

(i) Can results in a very substantial loss of information which has an
impact on precision and power.

(ii) Can give severely biased results if complete cases are not a random
sample of population of interest, i.e. complete case methods require
MCAR assumption.

2) All Available Case Methods: This is a general term for a variety of
different methods that use the available information to estimate means
and covariances (the latter based on all available pairs of cases).

In general, these methods are more efficient than complete case
methods (and can be fully efficient in some cases).
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Drawbacks:

(i) Sample base of cases changes over measurement occasions.

(ii) Pairwise available case estimates of correlations can lie outside (-1, 1).

(iii) Available case methods require MCAR assumption.

3. Imputation Methods: These are methods that fill in the missing
values. Once imputation is done, the analysis is straightforward.

(a) Stratification: Stratify into homogeneous subsets or classes; impute
mean value of strata, or randomly draw data value from those in the
strata.

(b) Regression imputation: Estimate response via some appropriately
chosen regression model.

306



Drawbacks:

(i) Systematically underestimate the variance and covariance.

(ii) Treating imputed data as real data leads to standard errors that are
too small (multiple imputation addresses this problem).

(iii) Their performance can be unreliable and usually require MCAR
assumption.

(iv) Can be fairly ad hoc, e.g. LVCF.

Last Value Carried Forward: Set the response equal to the last observed
value (or sometimes the ‘worst’ observed value).

This method of imputation is only valid under very strong assumptions.
In general, LVCF is not recommended!
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4. Likelihood-based Methods: At least in principle, maximum
likelihood estimation for incomplete data is the same as for complete
data and provides valid estimates and standard errors for more general
circumstances than methods 1), 2), or 3).

That is, under clearly stated assumptions likelihood-based methods
have optimal statistical properties.

For example, if missing data are ‘ignorable’ (MCAR/MAR),
likelihood-based methods (e.g. PROC MIXED) simply maximize the
marginal distribution of the observed responses.

If missing data are ‘non-ignorable’, likelihood-based inference must also
explicitly (and correctly) model the non-response process. However,
with ‘non-ignorable’ missingness the methods are very sensitive to
unverifiable assumptions.
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5. Weighting Methods: Base estimation on observed data, but weight
the data to account for missing data.

Basic idea: some sub-groups of the population are under-represented in
the observed data, therefore weight these up to compensate for
under-representation.

For example, with dropout, can estimate the weights as a function of the
individual’s covariates and responses up until the time of dropout.

This approach is valid provided the model for dropout is correct, i.e.
provided the correct weights are available.
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REVIEW: LOGISTIC AND POISSON
REGRESSION

In this lecture we consider Logistic and Poisson Regression for a single
response variable.

Logistic Regression:

So far, we have considered linear regression models for a continuous
response, Y , of the following form

Y = β0 + β1x1 + β2x2 + . . .+ βkxk + e

The response variable, Y , is assumed to have a normal distribution with
mean

E(Y ) = β0 + β1x1 + β2x2 + . . .+ βkxk

and with variance, σ2.
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Recall that the population intercept, β0, has interpretation as the mean
value of the response when all of the covariates take on the value zero.

The population slope, say β1, has interpretation in terms of the expected
change in the mean response for a single-unit change in x1 given that all
of the other covariates remain constant.

In many studies, however, we are interested in a response variable that is
dichotomous rather than continuous.

Next, we consider a regression model for a binary (or dichotomous)
response.
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Let Y be a binary response, where

Y = 1 represents a ‘success’;

Y = 0 represent a ‘failure’.

Then the mean of the binary response variable, denoted π, is the
proportion of successes or the probability that the response takes on the
value 1.

That is,
π = E(Y ) = Pr(Y = 1) = Pr(‘success’)

With a binary response, we are usually interested in estimating the
probability π, and relating it to a set of covariates.

To do this, we can use logistic regression.
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A naive strategy for modeling a binary response is to consider a linear
regression model

π = E(Y ) = β0 + β1x1 + β2x2 + . . .+ βkxk

However, in general, this model is not feasible since π is a probability and
is restricted to values between 0 and 1.

Also, the usual assumption of homogeneity of variance would be violated
since the variance of a binary response depends on the mean, i.e.

var(Y ) = π (1− π)

Instead, we can consider a logistic regression model where

ln [π/ (1− π)] = β0 + β1x1 + β2x2 + . . .+ βkxk
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This model accommodates the constraint that π is restricted to values
between 0 and 1.

Recall that π/ (1− π) is defined as the odds of success.

Therefore, modeling π with a logistic function can be considered
equivalent to a linear regression model where the mean of the continuous
response has been replaced by the logarithm of the odds of success.

Note that the relationship between π and the covariates is non-linear.

We can use ML estimation to obtain estimates of the logistic regression
parameters, under the assumption that the binary responses are Bernoulli
random variables.
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Given the logistic regression model

ln [π/ (1− π)] = β0 + β1x1 + β2x2 + . . .+ βkxk

the population intercept, β0, has interpretation as the log odds of success
when all of the covariates take on the value zero.

The population slope, say β1, has interpretation in terms of the change in
log odds of success for a single-unit change in x1 given that all of the
other covariates remain constant.

When one of the covariates is dichotomous, say x1, then β1 has a special
interpretation:

exp (β1) is the odds ratio or ratio of odds of success for the two possible
levels of x1 (given that all of the other covariates remain constant).
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Keep in mind that as:

π increases

⇒ odds of success increases

⇒ log odds of success increases

Similarly, as:

π decreases

⇒ odds of success decreases

⇒ log odds of success decreases
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Example: Development of bronchopulmonary dysplasia (BPD) in a
sample of 223 low birth weight infants.

Binary Response: Y = 1 if BPD is present, Y = 0 otherwise.

Covariate: Birth weight of infant in grams.

Consider the following logistic regression model

ln [π/ (1− π)] = β0 + β1Weight

where π = E(Y ) = Pr(Y = 1) = Pr(BPD)

SAS CODE

proc genmod data=infant;
model y=weight / d=bin link=logit;

run;
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For the 223 infants in the sample, the estimated logistic regression
(obtained using ML) is

ln [π̂/ (1− π̂)] = 4.0343− 0.0042 Weight

The ML estimate of β1 implies that, for every 1 gram increase in birth
weight, the log odds of BPD decreases by 0.0042.

For example, the odds of BPD for an infant weighing 1200 grams is

exp (4.0343− 1200 ∗ .0042) = exp (−1.0057)

= 0.3658

Thus the predicted probability of BPD is:

0.3658/ (1 + 0.3658) = 0.268
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Poisson Regression

In Poisson regression, the response variable is a count (e.g. number of
cases of a disease in a given period of time) and the Poisson distribution
provides the basis of likelihood-based inference.

Often the counts may be expressed as rates. That is, the count or
absolute number of events is often not satisfactory because any
comparison depends almost entirely on the sizes of the groups (or the
‘time at risk’) that generated the observations.

Like a proportion or probability, a rate provides a basis for direct
comparison.

In either case, Poisson regression relates the expected counts or rates to a
set of covariates.
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The Poisson regression model has two components:

1. The response variable is a count and is assumed to have a Poisson
distribution.

That is, the probability a specific number of events, y, occurs is

Pr(y events) = e−λλy/y!

Note that λ is the expected count or number of events and the expected
rate is given by λ/t, where t is a relevant baseline measure (e.g. t might
be the number of persons or the number of person-years of observation).

320



2. ln(λ/t) = β0 + β1x1 + β2x2 + . . .+ βkxk

Note that since ln(λ/t) = ln(λ)− ln(t), the Poisson regression model
can also be considered as

ln(λ) = ln(t) + β0 + β1x1 + β2x2 + . . .+ βkxk

where the ‘coefficient’ associated with ln(t) is fixed to be 1. This
adjustment term is known as an ‘offset’.
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Therefore, modelling λ (or λ/t) with a log function can be considered
equivalent to a linear regression model where the mean of the continuous
response has been replaced by the logarithm of the expected count (or
rate).

Note that the relationship between λ (or λ/t) and the covariates is
non-linear.

We can use ML estimation to obtain estimates of the Poisson regression
parameters, under the assumption that the responses are Poisson random
variables.
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Given the Poisson regression model

ln(λ/t) = β0 + β1x1 + β2x2 + . . .+ βkxk

the population intercept, β0, has interpretation as the log expected rate
when all the covariates take on the value zero.

The population slope, say β1, has interpretation in terms of the change in
log expected rate for a single-unit change in x1 given that all of the other
covariates remain constant.

When one of the covariates is dichotomous, say x1, then β1 has a special
interpretation:

exp (β1) is the rate ratio for the two possible levels of x1 (given that all of
the other covariates remain constant).
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Example: Prospective study of coronary heart disease (CHD).

The study observed 3154 men aged 40-50 for an average of 8 years and
recorded incidence of cases of CHD.

The risk factors considered include:

Smoking exposure: 0, 10, 20, 30 cigs per day;
Blood Pressure: 0 (< 140), 1 (≥ 140);
Behavior Type: 0 (type B), 1 (type A).

A simple Poisson regression model is:

ln (λ/t) = ln(rate of CHD) = β0 + β1 Smoke

or
ln (λ) = ln(t) + β0 + β1 Smoke
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Person - Blood
Years Smoking Pressure Behavior CHD

5268.2 0 0 0 20
2542.0 10 0 0 16
1140.7 20 0 0 13
614.6 30 0 0 3

4451.1 0 0 1 41
2243.5 10 0 1 24
1153.6 20 0 1 27
925.0 30 0 1 17

1366.8 0 1 0 8
497.0 10 1 0 9
238.1 20 1 0 3
146.3 30 1 0 7

1251.9 0 1 1 29
640.0 10 1 1 21
374.5 20 1 1 7
338.2 30 1 1 12

325



In this model the ML estimate of β1 is 0.0318. That is, the rate of CHD
increases by a factor of exp(0.0318) = 1.032 for every cigarette smoked.

Alternatively, the rate of CHD in smokers of one pack per day (20 cigs) is
estimated to be (1.032)20 = 1.88 times higher than the rate of CHD in
non-smokers.

We can include the additional risk factors in the following model:

ln (λ/t) = β0 + β1 Smoke + β2 Type + β1BP

Effect Estimate Std. Error

Intercept -5.420 0.130
Smoke 0.027 0.006
Type 0.753 0.136
BP 0.753 0.129
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Now, the adjusted rate of CHD (controlling for blood pressure and
behavior type) increases by a factor of exp(0.027) = 1.028 for every
cigarette smoked.

Thus, the adjusted rate of CHD in smokers of one pack per day (20 cigs)
is estimated to be (1.027)20 = 1.704 times higher than the rate of CHD in
non-smokers.

Finally, note that when a Poisson regression model is applied to data
consisting of very small rates (say, λ/t << 0.01), then the rate is
approximately equal to the corresponding probability, p, and

ln (rate) ≈ ln (p) ≈ ln [p/ (1− p)]

Therefore, both the dependent variables and the parameters for Poisson
regression and logistic regression models are approximately equal when
the event being studied is rare.

In that case, the results from a Poisson and logistic regression will not
give discernibly different results.
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INTRODUCTION TO GENERALIZED LINEAR
MODELS

In the first part of the course, we have focused on methods for analyzing
longitudinal data where the dependent variable is continuous and the
vector of responses is assumed to have a multivariate normal distribution.

We have also focused on fitting a linear model to the repeated
measurements.

We now turn to a much wider class of regression problems; namely those
in which we wish to fit a generalized linear model to the repeated
measurements.
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The generalized linear model is actually a class of regression models, one
that includes the linear regression model but also many of the important
nonlinear models used in biomedical research:

- Linear regression for continuous data

- Logistic regression for binary data

- Poisson models for counts

In the next few lectures, we will review the generalized linear model and
its properties, and show how we can apply generalized linear models in
the longitudinal data setting.

Before beginning a discussion of the theory, we will describe a data set
illustrating some of the analytic goals.

329



EFFECTIVENESS OF SUCCIMER IN REDUCING
BLOOD LEAD LEVELS

In the Treatment of Lead-Exposed Children Trial, 100 children were
randomized equally to succimer and placebo.

The percentages of children with blood lead levels below 20 µg/dL at the
three examinations after treatment were as follows:

Succimer Placebo Total

Time (Days)

7 78 16 47
28 76 26 51
42 54 26 40
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How can we quantify the effect of treatment with succimer on the
probability of having a blood lead level below 20 µg/dL at each occasion?

How can we test the hypothesis that succimer has no effect on these
probabilities?

If we had observations at only a single time point, we could model the
relative odds using logistic regression.

Here, we have to carefully consider the goals of the analysis and deal with
the problem of correlation among the repeated observations.
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Generalized Linear Model

The generalized linear model is actually a family of probability models
that includes the normal, Bernoulli, Poisson, and Gamma distributions.

Generalized linear models extend the methods of regression analysis to
settings where the outcome variable can be a dichotomous (binary)
variable, an ordered categorical variable, or a count.

The generalized linear model has some of the properties of the linear
model.

Most importantly, a parameter related to the expected value is assumed
to depend on a linear function of the covariates.
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However, the generalized linear model also differs in important ways from
the linear model.

Because the underlying probability distribution may not be normal, we
need new methods for parameter estimation and a new theoretical basis
for the properties of estimates and test statistics.

Next we consider the main properties of the generalized linear model.
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Let Yi, i = 1, . . . , n, be independent observations from a probability
distribution that belongs to the family of statistical models known as
generalized linear models.

The probability model for Yi has a three-part specification:

1. The distributional assumption.

2. The systematic component.

3. The link function.
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1. The distributional assumption.

Yi is assumed to have a probability distribution that belongs to the
exponential family.

The general form for the exponential family of distributions is

f(Yi) = exp [{Yiθi − a (θi)} /φ+ b (Yi, φ)] .

where θi is the ‘canonical’ parameter and φ is a ‘scale’ parameter.

Note: a(·) and b(·) are specific functions that distinguish distributions
belonging to the exponential family.

When φ is known, this is a one-parameter exponential distribution.

The exponential family of distributions include the normal, Bernoulli, and
Poisson distributions.
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Normal Distribution

f
(
Yi;µi, σ2

)
=

(
2πσ2

)−1/2
exp

{
− (Yi − µi)2

/2σ2
}

= exp
{
−1/2 ln

(
2πσ2

)}
exp

{
− (Yi − µi)2

/2σ2
}

= exp
{
−
(
Y 2
i − 2Yiµi + µ2

i

)
/2σ2 − 1/2 ln

(
2πσ2

)}
= exp

[{
Yiµi − µ2

i/2
}
/σ2 − 1/2

{
Y 2
i /σ

2 + ln
(
2πσ2

)}]
is an exponential family distribution with θi = µi and φ = σ2

Thus, θi is the ‘location’ parameter (mean) and φ the ‘scale’ parameter.

Note that a (θi) = θ2
i /2 and

b (Yi, φ) = −1/2
{
Y 2
i /σ

2 + ln
(
2πσ2

)}
= −1/2

{
Y 2
i /φ+ ln (2πφ)

}
Two other important exponential family distributions are the Bernoulli
and the Poisson distributions.
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Bernoulli Distribution

f (Yi;πi) = πYii (1− πi)1−Yi

where πi = Pr (Yi = 1)
Note that

f (Yi;πi) = πYii (1− πi)(1−Yi)

= exp {Yi ln (πi) + (1− Yi) ln (1− πi)}
= exp {Yi ln [πi/ (1− πi)] + ln (1− πi)}

Since

f (Yi;πi) = exp {Yi ln [πi/ (1− πi)] + ln (1− πi)}
⇒ θi = ln [πi/ (1− πi)]

= logit (πi)

and φ = 1.
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Poisson Distribution

f (Yi;λi) = e−λiλYi/Yi!

= exp {Yi lnλi − λi − ln (Yi!)}
⇒ θi = ln (λi)

and
φ = 1

Both the Bernoulli and the Poisson distributions are one-parameter
distributions.
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Mean and Variance of Exponential Family
Distribution

The representation of the exponential family distributions makes it easy
to see that the log likelihood is

logL (Yi; θi, φ) = {Yiθi − a (θi)} /φ+ b (yi, φ)

Using calculus, various properties of the exponential family distributions
can be derived.

In particular, it can be shown that

E (Yi) = a′ (θi)

V ar (Yi) = a′′ (θi)φ

where a′ (θi) = ∂a (θi) /∂θi and

a′′ (θi) = ∂2a (θi) /∂θ2
i .

339



logL (Yi; θi, φ) = {Yiθi − a (θi)} /φ+ b (yi, φ)

For the Bernoulli distribution, we have

logL (Yi; θi, φ) = Yi ln [πi/ (1− πi)] + ln (1− πi)

so that θi = ln[πi/ (1− πi)] and πi = eθi/
(
1 + eθi

)
.

Thus, the term ln (1− πi), when expressed as a function of θi, is

ln
(

1/
(

1 + e
θi
))

= − ln
(

1 + e
θi
)

Hence, a (θi) = ln
(
1 + eθi

)
, so that

a
′
(θi) = e

θi/
(

1 + e
θi
)

= πi

Furthermore
a
′′

(θi) =
{
e
θi
(

1 + e
θi
)
− e2θi

}
/
(

1 + e
θi
)2

= e
θi/
(

1 + e
θi
)2

= πi (1− πi)

is the variance of the Bernoulli distribution.
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2. The systematic component

Given covariates Xi1, . . . , Xik, the effect of the covariates on the expected
value of Yi is expressed through the ‘linear predictor’

ηi = β0 +
k∑
j=1

βjXij = Xiβ

3. The link function, g(·), describes the relation between the linear
predictor, ηi, and the expected value of Yi (denoted by µi),

g (µi) = ηi = β0 +
k∑
j=1

βjXij

Note: When θi = ηi, then we say that we are using the ‘canonical’ link
function.
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Common Examples of Link Functions

Normal distribution:

If we assume that g(·) is the identity function,

g (µ) = µ

then

µi = β0 +
k∑
j=1

βjXij

gives the standard linear regression model.

We can, however, choose other link functions when they seem appropriate
to the application.
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Bernoulli distribution:

For the Bernoulli distribution, the mean µi is πi, with 0 < πi < 1, so we
would prefer a link function that transforms the interval [0, 1] on to the
entire real line [−∞,∞].

There are several possibilities:

logit : ηi = ln [(πi/ (1− πi))]
probit : ηi = Φ−1 (πi)

where Φ(·) is the standard normal cumulative distribution function.

Another possibility is the complementary log-log link function:

ηi = ln [− ln (1− πi)]
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Poisson Distribution:
For count data, we must have µi = λi > 0.
The Poisson distribution is often used to model count data with the log
link function

ηi = ln (λi)

with inverse λi = eηi.
With the log link function, additive effects contributing to ηi act
multiplicatively on λi.
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Maximizing the Likelihood

Maximum likelihood (ML) estimation is used for making inferences about
β.

We maximize the log likelihood with respect to β by taking the derivative
of the log likelihood with respect to β, and then finding the values of β
that make those derivatives equal to 0.

Given

lnL =
n∑
i=1

({Yiθi − a (θi)} /φ+ b (Yi, φ))

the derivative of the log likelihood with respect to β is,

∂ lnL/∂β =
n∑
i=1

(∂θi/∂β) {Yi − a′ (θi)} /φ

=
n∑
i=1

(∂θi/∂β) {Yi − µi} /φ
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When a ‘canonical’ link function, θi = ηi, has been assumed

∂ lnL/∂β =
n∑
i=1

X′i {Yi − µi} /φ

Note: This is a vector equality because there is one equation for each
element of β.

Solving this set of simultaneous equations,

n∑
i=1

X′i {Yi − µi} = 0

yields the maximum likelihood estimates of β.
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GENERALIZED LINEAR MODELS FOR
LONGITUDINAL DATA

In this lecture, we will briefly survey a number of general approaches for
analyzing longitudinal data. These approaches can be considered
extensions of generalized linear models to correlated data.

The main focus will be on discrete response data, e.g. count data or
binary responses.

Recall that in linear models for continuous responses, the interpretation of
the regression coefficients is independent of the correlation among the
responses.

With discrete response data, this is no longer the case.
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With non-linear models for discrete data, different assumptions about the
source of the correlation can lead to regression coefficients with distinct
interpretations.

We will return to this issue later in the course.

We will consider three main extensions of generalized linear models:

1. Marginal Models

2. Mixed Effects Models

3. Transitional Models
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Suppose that Yi = (Yi1, Yi2, . . . , Yip) is a vector of correlated responses
from the ith subject.

To analyze such correlated data, we must specify, or at least make
assumptions about, the multivariate or joint distribution,

f (Yi1, Yi2, . . . , Yip)

The way in which the multivariate distribution is specified yields three
somewhat different analytic approaches:

1. Marginal Models

2. Mixed Effects Models

3. Transitional Models
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Marginal Models
One approach is to specify the marginal distribution at each time point:

f (Yij) for j = 1, 2, . . . , p

along with some assumptions about the covariance structure of the
observations.

The basic premise of marginal models is to make inferences about
population averages.

The term ‘marginal’ is used here to emphasize that the mean response
modelled is conditional only on covariates and not on other responses (or
random effects).
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Consider the Treatment of Lead-Exposed Children Trial where 100
children were randomized equally to succimer and placebo.

The percentages of children with blood lead levels below 20 µg/dL at the
three examinations after treatment were as follows:

Succimer Placebo Total

Time (Days)

7 78 16 47
28 76 26 51
42 54 26 40
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We might let xi be an indicator variable denoting treatment assignment.
If µij is the probability of having blood lead below 20 in treatment group
i at time j, we might assume

logit (µij) = β0 + β1time1ij + β2time2ij + β3Xi

where time1ij and time2ij are indicator variables for days 7 and 28
respectively.

This is an example of a marginal model.
Note, however, that the covariance structure remains to be specified.
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Mixed Effects Models

Another possibility is to assume that the data for a single subject are
independent observations from a distribution belonging to the exponential
family, but that the regression coefficients can vary from person to person
according to a random effects distribution, denoted by F .

That is, conditional on the random effects, it is assumed that the
responses for a single subject are independent observations from a
distribution belonging to the exponential family.
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Suppose, for example, that the probability of a blood lead < 20 for
participants in the TLC trial is described by a logistic model, but that the
risk for an individual child depends on that child’s latent (perhaps
environmentally and genetically determined) ‘random response level’.

Then we might consider a model where

logit Pr (Yij = 1|bi) = β0 + β1time1ij + β2time2ij + β3Xi + bi

Note that such a model also requires specification of F (bi).

Frequently, it is assumed that bi is normally distributed with mean 0 and
some unknown variance, σ2

b .

This is an example of a generalized linear mixed effects model.
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Transitional (Markov) Models

Finally, another approach is to express the joint distribution as a series of
conditional distributions,

f (Yi1, Yi2, . . . , Yip) = f (Yi1) f (Yi2|Yi1) · · · f (Yip|Yi1, . . . , Yi,p−1)

This is known as a transitional model (or a model for the transitions)
because it represents the probability distribution at each time point as
conditional on the past.

This provides a complete representation of the joint distribution.
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Thus, for the blood lead data in the TLC trial, we could write the
probability model as

f (Yi1|xi) f (Yi2|Yi1, xi) f (Yi3|Yi1, Yi2, xi)

That is, the probability of a blood lead value below 20 at time 2 is
modeled conditional on whether blood lead was below 20 at time 1, and so
on.

As noted above, transitional models potentially provide a complete
description of the joint distribution.
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For the linear model, the regression coefficients of the marginal, mixed
effects and transitional models can be directly related to one another.

For example, coefficients from random effects and transitional models can
be given marginal interpretations.

However, with non-linear link functions, such as the logit or log link
functions, this is not the case.

We will return to this point later.

For now, we describe the development and application of marginal models
for the analysis of repeated responses.
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MARGINAL MODELS

A feature of marginal models is that the models for the mean and the
covariance are specified separately.

We assume that the marginal density of Yij is given by

f (Yij) = exp [{Yijθij − a (θij)} /φ+ b (Yij, φ)]

That is, each Yij is assume to have a distribution from the exponential
family.

The marginal expectation, E (Yij), of each response is then modelled as a
function of covariates.
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Specifically, with marginal models we make the following assumptions:

• the marginal expectation of the response, E (Yij) = µij, depends on
explanatory variables, Xij, through a known link function

g (µij) = ηij = Xijβ

• the marginal variance of Yij depends on the marginal mean according to

V ar (Yij) = υ (µij)φ

where υ (µij) is a known ‘variance function’ and φ is a scale parameter
that may need to be estimated.

• the covariance between Yij and Yik is a function of the means and
perhaps of additional parameters, say α, that may also need to be
estimated.
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Marginal models are considered a natural approach when we wish to
extend the generalized linear models methods of analysis of independent
observations to the setting of correlated responses.

The crucial point to keep in mind is that with marginal models the mean
and within-subject correlation are modelled separately.

Examples of Marginal Models:

Continuous responses:

1. µij = ηij = Xijβ
(i.e. linear regression)

2. V ar (Yij) = φ
(i.e. homogeneous variance)

3. Corr (Yij, Yik) = α|k−j| (0 ≤ α ≤ 1)
(i.e. autoregressive correlation)
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Binary responses:

1. Logit (µij) = ηij = Xijβ
(i.e. logistic regression)

2. V ar (Yij) = µij (1− µij)
(i.e. Bernoulli variance)

3. Corr (Yij, Yik) = αjk
(i.e. unstructured correlation)

Count data:

1. Log (µij) = ηij = Xijβ
(i.e. Poisson regression)

2. V ar (Yij) = µijφ
(i.e. extra-Poisson variance)

3. Corr (Yij, Yik) = α
(i.e. compound symmetry correlation)
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Interpretation of Marginal Models

The regression parameters, β, have ‘population-averaged’ interpretations:

- describe the effect of covariates on the marginal expectations or average
responses

- contrast the means in sub-populations that share common covariate
values

The regression parameters, β, have the same interpretation as in
cross-sectional analyses.

The nature or magnitude of the correlation does not alter the
interpretation of β.
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Statistical Inference for Marginal Models

Maximum Likelihood (ML):

Unfortunately, with discrete response data there is no analogue of the
multivariate normal distribution.

In the absence of a ‘convenient’ likelihood function for discrete data, there
is no unified likelihood-based approach for marginal models.

Recall: In linear models for normal responses, specifying the means and
the covariance matrix fully determines the likelihood.

This is not the case with discrete response data.

To specify the likelihood for multivariate discrete data, additional
assumptions about ‘higher-order moments’ are required.
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Even when additional assumptions are made, the likelihood is often
intractable.

To illustrate some of the problems, consider a discrete response, Yij,
having C categories.

The joint distribution of Yi = (Yi1, Yi2, . . . , Yip) is multinomial, with a Cp

joint probability vector.

For example, when C = 5 and p = 10, the joint probability vector is of
length 10,000,000.

Problem: Computations grow exponentially with p and ML quickly
becomes impractical.

Solution: We will consider an alternative approach to estimation -
Generalized Estimating Equations (GEE).
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GENERALIZED ESTIMATING EQUATIONS

Since there is no ‘convenient’ or natural specification of the joint
multivariate distribution of Yi = (Yi1, Yi2, . . . , Yip) for marginal models
when the responses are discrete, we need an alternative to maximum
likelihood (ML) estimation.

Liang and Zeger (1986) proposed such a method based on the concept of
‘estimating equations’.

This provides a general and unified approach for analyzing discrete and
continuous responses with marginal models.
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The essential idea was to generalize the usual univariate likelihood
equations by introducing the covariance matrix of the vector of responses,
Yi.

For linear models, generalized least squares (GLS) can be considered a
special case of this ‘estimating equations’ approach.

For non-linear models, this approach is called ‘generalized estimating
equations’ (or GEE).
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Fitting Marginal Models

Let Yi = (Yi1, Yi2, . . . , Yip) be a vector of correlated responses for the ith

subject (i = 1, . . . , n).

Suppose that the following marginal model has been assumed:

• the marginal expectation of the response, E (Yij) = µij, depends on
explanatory variables, Xij, through a known link function

g (µij) = ηij = Xijβ

• the marginal variance of Yij depends on the marginal mean according to

V ar (Yij) = υ (µij)φ

where υ (µij) is known and φ may have to be estimated.

• the correlation between Yij and Yik is a function of some additional
parameters, α, and may also depend on µij and µik.
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Then, an estimate of β can be obtained as the solution to the following
‘generalized estimating equations’

n∑
i=1

D′iV
−1
i (Yi − µi) = 0

where Di = ∂µi/∂β and Vi is a ‘working’ covariance matrix, i.e.
Vi ≈ Cov (Yi).

That is,

Di =


∂µi1/∂β1 ∂µi1/∂β2 . . . ∂µi1/∂βk

. . . . . .

. . . . . .

. . . . . .
∂µip/∂β1 ∂µip/∂β2 . . . ∂µip/∂βk


Note that Di is a function of β, while Vi is a function of both β and α.
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Recall that we can express Vi as a function of the variances and
correlations,

Vi = φA1/2
i R (α) A1/2

i

where Ai is a diagonal matrix with υ (µij) as the jth diagonal element.

That is,

Ai =


υ (µi1) 0 0 . . . 0 0

0 υ (µi2) 0 . . . 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 . . . 0 υ (µip)
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Therefore the generalized estimating equations depend on both β and α.

Because the generalized estimating equations depend on both β and α, an
iterative two-stage estimation procedure is required:

1. Given current estimates of α and φ, an estimate of β is obtained as the
solution to the ‘generalized estimating equations’

2. Given current estimate of β, estimates of α and φ are obtained based
on the standardized residuals,

rij = (Yij − µ̂ij) /υ (µ̂ij)
1/2
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Properties of GEE estimators

Assuming that the estimators of α and φ are consistent, β̂, the solution to
the generalized estimating equations has the following properties:

1. β̂ is a consistent estimate of β (with high probability, it is close to β)

2. In large samples, β̂ has a multivariate normal distribution

3. Cov
(
β̂
)

= F−1GF−1, where

F =
n∑
i=1

D′iV
−1
i Di

G =
n∑
i=1

D′iV
−1
i Cov (Yi) V−1

i Di

Note that F and G can be estimated by replacing α, φ, and β by their
estimates, and replacing Cov (Yi) by (Yi − µ̂i) (Yi − µ̂i)

′.
That is, we can use the empirical or so-called ‘sandwich’ variance
estimator.
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In summary, the GEE estimators have the following attractive properties:

1. In many cases β̂ is almost efficient when compared
to MLE.
For example, GEE has same form as likelihood equations for
multivariate normal models and also certain models for discrete data

2. β̂ is consistent even if the covariance of Yi has been misspecified

3. Standard errors for β̂ can be obtained using the empirical or so-called
‘sandwich’ estimator
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Example 1: Estimating the Effect of Succimer Therapy on
Pr (Blood lead < 20µg/dL).

Consider the Treatment of Lead-Exposed Children Trial where 100
children were randomized equally to succimer and placebo.

The percentages of children with blood lead levels below 20 µg/dL at the
three examinations after treatment were as follows:

Succimer Placebo Total

Time (Days)

7 78 16 47
28 76 26 51
42 56 28 42
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Suppose that we wish to fit a logistic model to the 3 by 2 table of
response rates in the blood lead study.

We could begin by fitting the model

logit (µij) = β0 + β1timeij + β2trti

where time is initially assumed to be a continuous variable taking the
values 1, 4, and 6 (weeks).

However, we must also make some assumptions about the variances and
the correlations. For example, we could assume that

var (Yij) = µij (1− µij)

and
corr (Yij, Yik) = α (‘exchangeable’).
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We can perform the analysis using the GEE option is SAS PROC
GENMOD.
data lead;

input id trt $ week y;
cards ;
001 P 1 0
001 P 4 0
001 P 6 0
002 A 1 1
002 A 4 1
002 A 6 0

. . . .

. . . .

. . . .
;

proc genmod data=lead descending;
class id trt;
model y=week trt / d=bin;
repeated subject=id / type=exch corrw modelse;
output out=pprobs p=pred xbeta=xbeta;

proc print data=pprobs;
run;
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GEE Model Information
Description Value

Correlation Structure Exchangeable
Subject Effect id (100 levels)
Number of Clusters 100
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 3

Working Correlation Matrix

col1 col2 col3

ROW1 1.0000 0.4571 0.4571
ROW2 0.4571 1.0000 0.4571
ROW3 0.4571 0.4571 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard
Parameter Estimate Error Z Pr> |Z|
Intercept -1.0591 0.2823 -3.750 0.0002
week -0.0420 0.0517 -0.814 0.4158
trt A 2.0487 0.3661 5.596 <.0001
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Comparison of observed and predicted probabilities from the model with
continuous time and treatment.

Succimer Placebo

Time (Days)

7 .78 (.72) .16 (.25)
28 .76 (.69) .26 (.23)
42 .56 (.68) .28 (.21)

(Predicted probabilities in parentheses)
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Next, consider fitting the model with treatment*time interaction,

logit (µij) = β0 + β1timeij + β2trti + β3timeij ∗ trti

We can perform the analysis using the following commands in SAS PROC
GENMOD:

proc genmod data=lead descending;
class id trt;
model y=week trt week*trt/ d=bin;
repeated subject=id / type=exch corrw;

run;
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GEE Model Information
Description Value

Correlation Structure Exchangeable
Subject Effect id (100 levels)
Number of Clusters 100
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 3

Working Correlation Matrix
col1 col2 col3

ROW1 1.0000 0.4758 0.4758
ROW2 0.4758 1.0000 0.4758
ROW3 0.4758 0.4758 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard
Parameter Estimate Error Z Pr> |Z|
INTERCEPT -1.7343 0.4020 -4.31 <.0001
WEEK 0.1428 0.0786 1.82 0.0692
TRT A 3.3788 0.5714 5.91 <.0001
WEEK*TRT A -0.3478 0.1043 -3.33 0.0009
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Placebo:
logit (µ̂ij) = −1.7343 + 0.1428 timeij

Succimer:

logit (µ̂ij) = (−1.7343 + 3.3788)

+ (0.1428− 0.3478) timeij

= 1.6445− 0.2050 timeij

Thus, in the placebo group the odds of blood lead < 20µg/dL is
increasing over time, while in the succimer group the odds is decreasing.

Recall: Odds =
Pr (Blood lead < 20µg/dL)
Pr (Blood lead ≥ 20µg/dL)
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Comparison of observed and predicted probabilities from the model with
interaction of continuous time and treatment.

Succimer Placebo

Time (Days)

7 .78 (.81) .16 (.17)
28 .76 (.70) .26 (.24)
42 .56 (.60) .28 (.29)

(Predicted probabilities in parentheses)
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Generalized Estimating Equations

Example 2: Six Cities Study of Respiratory Illness in Children.

A non-randomized longitudinal study of the health effects of air pollution.

Subset of data from one of the participating cities: Steubenville, Ohio

Outcome variable: Binary indicator of respiratory infections in child.

Measurements on the children were taken annually at ages 7, 8, 9, and 10.

Interested in changes in the rates of respiratory illness and the influence of
maternal smoking.
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Proportion of children reporting respiratory illness,
by age and mother’s smoking status

Six Cities Study of Air Pollution and Health

Age
7 8 9 10

Smoking Mother 0.17 0.21 0.19 0.14
Non-Smoking Mother 0.16 0.15 0.14 0.11
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Assume marginal probability of infection follows the following logistic
model,

logit(µij) = β0 + β1ageij + β2smokei + β3ageij ∗ smokei

where ageij = child’s age - 9; and smokei = 1 if child’s mother smokes, 0
otherwise.
Also, we assume that

var(Yij) = µij(1− µij)

Need to make assumptions about the association, e.g., corr(Yij, Yik) = αjk
(‘unstructured’).

However, with binary responses correlations are not the best choice for
modelling the association.
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Measures of Association for Binary Responses

A drawback of using correlations as a measure of association with binary
responses is that the correlations are constrained by the marginal
probabilities.

For example, if E(Y1) = Pr(Y1 = 1) = 0.2 and E(Y2) = Pr(Y2 = 1) = 0.8,
then Corr(Y1, Y2) < 0.25.

The correlations must satisfy certain linear inequalities determined by the
marginal probabilities.

These constraints are likely to cause difficulties for parametric modelling
of the association.

With binary responses, the odds ratio is a natural measure of association
between a pair of responses.
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The odds ratio for any pair of binary responses, Yj and Yk, is defined as

OR(Yj, Yk) =
Pr(Yj = 1, Yk = 1)Pr(Yj = 0, Yk = 0)
Pr(Yj = 1, Yk = 0)Pr(Yj = 0, Yk = 1)

.

Note that the constraints on the odds ratio are far less restrictive than on
the correlation.

=⇒ Use modified GEE with association modelled in terms of odds ratios
rather than correlations.

For binary responses, PROC GENMOD has options that allow modelling
of the log odds ratios.
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SAS Commands for PROC GENMOD
data child;

input id smoke age y;
cards;
001 1 7 0
001 1 8 0
001 1 9 0
001 1 10 1
002 0 7 1
002 0 8 0
002 0 9 1
002 0 10 0

.

.

.
;
proc genmod data=child descending;

class id;
model y = age smoke age*smoke / d=bin;
repeated subject=id / covb logor=fullclust;

run;
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SAS Output from PROC GENMOD

GEE Model Information

Log Odds Ratio Structure Fully Parameterized Clusters
Subject Effect id (537 levels)
Number of Clusters 537
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Log Odds Ratio Parameter
Information

Parameter Group

Alpha1 (1, 2)
Alpha2 (1, 3)
Alpha3 (1, 4)
Alpha4 (2, 3)
Alpha5 (2, 4)
Alpha6 (3, 4)
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Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard
Parameter Estimate Error Z Pr > |Z|

Intercept -1.9052 0.1191 -16.00 <.0001
age -0.1434 0.0583 -2.46 0.0139
smoke 0.3061 0.1882 1.63 0.1038
age*smoke 0.0685 0.0887 0.77 0.4399

Alpha1 1.9460 0.2630 7.40 <.0001
Alpha2 1.7344 0.2688 6.45 <.0001
Alpha3 1.9889 0.2817 7.06 <.0001
Alpha4 2.4268 0.2752 8.82 <.0001
Alpha5 1.9358 0.2817 6.87 <.0001
Alpha6 2.2250 0.2885 7.71 <.0001
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Next, consider the model without age*smoke interaction.

proc genmod data=child descending;
class id;
model y = age smoke / d=bin;
repeated subject=id / covb logor=fullclust;

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard
Parameter Estimate Error Z Pr > |Z|

Intercept -1.8847 0.1138 -16.56 <.0001
age -0.1158 0.0439 -2.63 0.0084
smoke 0.2561 0.1779 1.44 0.1501

Alpha1 1.9393 0.2634 7.36 <.0001
Alpha2 1.7275 0.2690 6.42 <.0001
Alpha3 1.9788 0.2814 7.03 <.0001
Alpha4 2.4302 0.2752 8.83 <.0001
Alpha5 1.9448 0.2815 6.91 <.0001
Alpha6 2.2271 0.2881 7.73 <.0001
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Thus, there is evidence that the rates of respiratory infection decline with
age, but the rates do not appear to depend on whether a child’s mother
smokes.

For a child whose mother does not smoke, the predicted probability of
infection at ages 7, 8, 9, and 10 is 0.170, 0.150, 0.132, and 0.116
respectively.

While for a child whose mother does smoke, the predicted probability of
infection at ages 7, 8, 9, and 10 is 0.205, 0.182, 0.161, and 0.142
respectively.
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GEE with Missing Data

PROC GENMOD will allow you to have missing data that is either
intermittent or due to dropouts, provided that the data are missing
completely at random (MCAR).

If there is imbalance due to missing data, it may be necessary to include a
within-subject effect when using PROC GENMOD. That is, it may be
necessary to define an effect specifying the order of measurements within
individuals:

proc genmod data=child descending;
class id time;
model y=age smoke / d=bin;
repeated subject=id /

within=time logor=fullclust covb;

Note: The variable defining the within-subject effect must be listed on the
CLASS statement.
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GENERALIZED LINEAR MIXED MODELS

So far, we have discussed marginal models for longitudinal data and the
use of generalized estimating equations to fit these models.

To fit marginal models, we made some assumptions about the marginal
distribution at each time point, and estimated a matrix of correlation
coefficients linking repeated observations of the same subject.

In specifying the marginal expectations and variances and the covariance
matrices, we were not fully specifying the joint distribution of the
repeated measurements.

Thus, estimation using GEE is not likelihood-based. Nevertheless, we
described methods for estimating and forming confidence intervals for the
regression parameters.
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Next, we consider a second type of extension of the generalized linear
model, the generalized linear mixed model.

We describe how these models extend the conceptual approach
represented by the linear mixed model 3.

We also highlight their greater degree of conceptual and analytic
complexity relative to the marginal models.

3Recall: A mixed model is one that contains both fixed and random effects
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Incorporating Random Effects into Generalized
Linear Models

The basic premise is that we assume that there is natural heterogeneity
across individuals in a subset of the regression coefficients.

That is, a subset of the regression coefficients (e.g. intercepts) are
assumed to vary across individuals according to some distribution.

Then, conditional on the random effects, it is assumed that the responses
for a single individual are independent observations from a distribution
belonging to the exponential family.

Before discussing generalized linear mixed models, lets consider the
simplest case: the linear mixed effects model.
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The linear mixed effects model can be considered in two steps:

First Step: Assumes Yi has a normal distribution that depends on
population-specific effects, β, and individual-specific effects, bi,

Yi = Xiβ + Zibi + ei

with ei being a vector of errors, and ei ∼ N (0,Ri).

Second-Step: The bi are assumed to vary independently from one
individual to another and bi ∼ N (0,G).

That is, the response for the ith subject at the jth occasion is assumed to
differ from the population mean, Xijβ, by a subject effect, bi, and a
within-subject measurement error, eij.
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Note 1: Ri = var(ei) describes the covariance among observations when
we focus on the response profile of a specific individual.

That is, it is the covariance of the ith subject’s deviations from his/her
mean profile Xiβ + Zibi

Usually, it is assumed that Ri = σ2I, where I is an identity matrix
=⇒ ‘conditional independence assumption’.

Note 2: In the mixed model

Yi = Xiβ + Zibi + ei

the vector of regression parameters β are the fixed effects, which are
assumed to be the same for all individuals.

In contrast to β, the bi are subject-specific regression coefficients and
describe the mean response profile of a specific individual (when combined
with the fixed effects) .
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Finally, in the mixed model

Yi = Xiβ + Zibi + ei

recall that
E(Yi|bi) = Xiβ + Zibi

and
E (Yi) = Xiβ

Similarly,
var (Yi|bi) = var (ei) = Ri = σ2I

and

var (Yi) = var (Zibi) + var (ei)

= ZiGZ ′i + Ri = ZiGZ ′i + σ2I

Thus, the introduction of random effects, bi, induces correlation
(marginally) among the Yi.
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Generalized Linear Mixed Model

For non-Normal responses, Yi, the generalized linear mixed model can
also be considered in two steps:

First Step: Assumes that the conditional distribution of each Yij, given bi,
belongs to the exponential family with conditional mean,

g(E[Yij|bi]) = Xijβ + Zijbi

where g(·) is a known link function.

Second-Step: The bi are assumed to vary independently from one
individual to another and bi ∼ N (0,G).

Note: There is an additional assumption of ‘conditional independence’,
i.e., given bi, the responses Yi1, Yi2, ..., Yip are mutually independent.
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Example 1:

Binary logistic model with random intercepts:

logit(E[Yij|bi]) = Xijβ + bi

with bi ∼ N(0, σ2).

Example 2:

Random coefficients Poisson regression model:

log(E[Yij|bi]) = Xijβ + Zijbi

with Xij = Zij = [1, tij] (i.e. random intercepts and random slopes) and
bi ∼ N (0,G).
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Interpretation

Mixed effects models are most useful when the scientific objective is to
make inferences about individuals rather than the population averages.

Main focus is on the individual and the influence of covariates on the
individual.

Regression parameters, β, measure the direct influence of covariates on
the responses of heterogeneous individuals.

For example, in the following logistic model,

logit(E[Yij|bi]) = Xijβ + bi

with bi ∼ N(0, σ2), each element of β measures the change in the log odds
of a ‘positive’ response per unit change in the respective covariate, for a
specific individual having an underlying propensity to respond positively,
bi.
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Estimation

The joint probability density function is given by:

f(Yi|Xi,bi)f(bi)

Inferences are based on the marginal or integrated likelihood function:

n∏
i=1

∫
f(Yi|Xi,bi)f(bi)dbi

That is, ML estimation of β and G is based on the marginal or integrated
likelihood of the data (obtained by averaging over the distribution of the
unobserved random effects, bi.

Estimation using maximum likelihood involves a two-step procedure:
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1. ML estimation of β and G is based on the marginal or integrated
likelihood of the data (obtained by averaging over the distribution of
the unobserved random effects, bi).

However, simple analytic solutions are rarely available and numerical or
Monte Carlo integration techniques are required.

2. Given estimates of β and G, the random effects can be predicted as
follows,

b̂i = E(bi|Yi; β̂, Ĝ)

(Posterior mean)

Note that E(bi|Yi; β̂, Ĝ) involves integrating (or averaging) over the
distribution of the unobserved random effects, bi).

However, simple analytic solutions are rarely available and numerical or
Monte Carlo integration techniques are required.
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Statistical Software: PROC NLMIXED in SAS

A potential limitation of generalized linear mixed models is their
computational burden. Because, in general, there is no simple closed-form
solution for the marginal likelihood, numerical integration techniques are
required.

Maximum (marginal) likelihood estimation has only recently been
implemented in standard statistical software, e.g., PROC NLMIXED in
SAS.

PROC NLMIXED directly maximizes an approximate integrated
likelihood (using numerical quadrature).
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Example: Six Cities Study of Respiratory Illness in Children.

A non-randomized longitudinal study of the health effects of air pollution.

Subset of data from one of the participating cities: Steubenville, Ohio

Outcome variable: Binary indicator of respiratory infections in child.

Measurements on the children were taken annually at ages 7, 8, 9, and 10.

Interested in changes in an individual’s rate of respiratory illness and the
influence of maternal smoking?
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Assume conditional probability of infection follows the mixed effects
logistic regression model,

logit(E[Yij|bi]) = β0 + bi + β1ageij + β2smokei

where ageij = child’s age - 9, and smokei =1 if child’s mother smokes, 0
otherwise;
and bi ∼ N(0, σ2).
Also, we assume that

var(Yij|bi) = E[Yij|bi](1− E[Yij|bi]).
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SAS Commands for PROC NLMIXED

proc nlmixed data=child qpoint=50;
parms beta0=-1.88 beta1=-.1158

beta2=.2561 s2u=2.0;
eta=beta0 + beta1*age + beta2*smoke + u;
expeta=exp(eta);
p=expeta/(1+expeta);
model y ~ binary(p);
random u ~ normal(0, s2u) subject=id;

run;
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SAS Output from PROC NLMIXED

The NLMIXED Procedure
Specifications

Data Set WORK.CHILD
Dependent Variable Y
Distribution for Dependent Variable Binary
Random Effects u
Distribution for Random Effects Normal
Subject Variable id
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature
Dimensions

Observations Used 2148
Observations Not Used 0
Total Observations 2148
Subjects 537
Max Obs Per Subject 4
Parameters 4
Quadrature Points 50
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Fitting Information

-2 Log Likelihood 1595.3
AIC (smaller is better) 1603.3
AICC (smaller is better) 1603.3
BIC (smaller is better) 1620.4

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t|

beta0 -3.1015 0.2190 536 -14.16 <.0001
beta1 -0.1756 0.0677 536 -2.59 0.0097
beta2 0.3985 0.2731 536 1.46 0.1450

s2u 4.6866 0.8005 536 5.85 <.0001

409



Results of the analysis suggest:

1. Estimates of the fixed effects in the mixed effects logistic model are
larger than in the marginal model

2. β2 has interpretation in terms of the log odds of infection for a
particular child.
That is, the ratio of odds of infection for a given child whose mother
smokes, versus the same child (or a child with identical latent,
underlying risk) whose mother does not smoke, is 1.49 (e0.399).

3. Estimated variance of the random intercepts in relatively large

4. Heterogeneity should not be ignored
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Example: Clinical trial of anti-epileptic drug progabide (Thall and Vail,
Biometrics, 1990)

Randomized, placebo-controlled study of treatment of epileptic seizures
with progabide.

Patients were randomized to treatment with progabide, or to placebo in
addition to standard chemotherapy.

Response variable: Count of number of seizures

Measurement schedule: Baseline measurement during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Interested in the effect of treatment with progabide on changes in an
individual’s rate of seizures?
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Assume conditional rate of seizures follows the following mixed effects
loglinear model,

log(E[Yij|bi]) = log(tij) + β0 + bi0 + β1timeij + bi1timeij+
β2trtij + β3timeij ∗ trtij

where tij = length of period; timeij = 1 if periods 1-4, 0 if baseline; trtij
= 1 if progabide, 0 if placebo.

(bi0, bi1) are assumed to have a bivariate normal distribution with zero
mean and covariance G.

Also, we assume that

var(Yij|bi) = E[Yij|bi].
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SAS Commands for PROC NLMIXED

proc nlmixed data=new qpoints=50;
parms beta0=1.346 beta1=.1118 beta2=-.1068

beta3=-.3024 s2u1=0.5 s2u2=0.25 cu12=0.01;
eta = ltime + beta0 + beta1*time + beta2*trt

+ beta3*time*trt + u1 + u2*time;
mu=exp(eta);
model y ~ poisson(mu);
random u1 u2 ~ normal([0,0], [s2u1,cu12,s2u2])
subject=id;

run;
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Output from PROC NLMIXED
The NLMIXED Procedure

Specifications
Data Set WORK.NEW
Dependent Variable y
Distribution for Dependent Variable Poisson
Random Effects u1 u2
Distribution for Random Effects Normal
Subject Variable id
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature
Dimensions

Observations Used 290
Observations Not Used 0
Total Observations 290
Subjects 58
Max Obs Per Subject 5
Parameters 7
Quadrature Points 50
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Fitting Information

-2 Log Likelihood 1787.1
AIC (smaller is better) 1801.1
BIC (smaller is better) 1815.5

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t|

beta0 1.0692 0.1344 56 7.96 <.0001
beta1 0.0078 0.1070 56 0.07 0.9421
beta2 -0.0079 0.1860 56 -0.04 0.9661
beta3 -0.3461 0.1489 56 -2.33 0.0237

s2u1 0.4529 0.0935 56 4.84 <.0001
s2u2 0.2163 0.0587 56 3.68 0.0005
cu12 0.0151 0.0529 56 0.29 0.7762
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Results of the analysis suggest:

1. A patient treated with placebo has the same expected seizure rate
before and after randomization [exp(0.010) ≈ 1].

2. A patient treated with progabide has expected seizure rate reduced
after treatment by approximately 28% [1− exp(0.010− 0.345) ≈ 0.28].

3. Estimated variance of the random intercepts and slopes in relatively
large

4. Heterogeneity should not be ignored
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TRANSITIONAL MODELS

In transitional models the conditional distribution of each response is
expressed as an explicit function of the past responses and covariates (the
‘history’).

Therefore the correlation among the repeated responses can be thought of
as arising due to past values of the responses explicitly influencing the
present observation (i.e. the ‘present’ depends on the ‘past’)

Additional notation:

Let the ‘history’ of the past responses at the jth occasion be denoted by,

Hij = {Yi1, ..., Yi,j−1}

Next, we consider a broad class of transitional models known as
generalized autoregressive models.
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Generalized Autoregressive Models

We assume that f(yij|Hij) has a distribution belonging to the exponential
family, with conditional mean

g(E[yij|Hij]) = Xijβ +
s∑
r=1

αrfr(Hij),

where g(·) is a known link function and the fr(Hij) are known functions
of previous observations.

For example,

f1(Hij) = Yi,j−1; f2(Hij) = Yi,j−2; f3(Hij) = Yi,j−3.

Note: Initial values Yi0, Yi,−1, ..., are assumed part of the covariates, Xij.
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In generalized autoregressive models the assumption that β are
homogeneous with respect to time and in the population can be relaxed;
e.g., homogeneity of parameters in sub-populations.

If only a finite number of past responses are included in Hij, so-called
Markov models are obtained.

Note: When the response is discrete, these models are often called Markov
chain models.

Models in which the conditional distribution of Yij given Hij depends only
on the q immediately prior observations are known as
Markov models of order q.
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Examples:

Continuous responses

1. f(Yij|Hij) has a normal distribution

2. E(Yij|Hij) = Xijβ + α1Yi,j−1 + α2Yi,j−2

3. var(Yij|Hij) = σ2

This is a second order Markov model.

Binary responses

1. f(Yij|Hij) has a Bernoulli distribution

2. logit(E(Yij|Hij)) = Xijβ + α1Yi,j−1

3. var(Yij|Hij) = E[Yij|Hij](1− E[Yij|Hij])

This is a first order Markov chain model.
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Count data

1. f(Yij|Hij) has a Poisson distribution

2. log(E(Yij|Hij)) = Xijβ + α1{log(Y ∗i,j−1)−Xi,j−1β}

where Y ∗ij = max(Yij, k), 0 < k < 1.

The constant k prevents Yij becoming an ‘absorbing state’, with
Yi,j−1 = 0 forcing all future responses to be 0.

3. var(Yij|Hij) = E(Yij|Hij)
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Note that if we assume

log(E(Yij|Hij)) = Xijβ + α1Yi,j−1

then
E[Yij|Hij]) = exp(Xijβ)exp(α1Yi,j−1)

and the conditional mean grows exponentially over time when α1 > 0.

On the other hand, when α1 < 0 the model describes negative correlation
among the repeated responses.

Therefore, this model has limited use for analyzing longitudinal count
data and the alternative specification of the time dependence is required.
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Interactions in Transitional Models

Note that we could allow completely separate logistic regressions for
children with and without infections at the previous occasion:

logit(Pr[Yij = 1|Yi,j−1 = 0]) = Xijβ0

logit(Pr[Yij = 1|Yi,j−1 = 1]) = Xijβ1

This model can be written as

logit(Pr(Yij = 1|Yi,j−1) = Xijβ0 + Yi,j−1 ∗ (Xijα)

where α = β1 − β0.
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From this perspective, the model

logit(Pr(Yij = 1|Yi,j−1) = Xijβ + αYi,j−1

can be seen to make a fairly strong assumption.

That is, it asserts that the effect of other covariates on risk is the same for
those with and without infections at the previous occasion.

In most practical applications of transitional models, potential interactions
between covariates and the lagged responses should be examined.
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Statistical Inference

Recall that the joint distribution of (Yi1, ..., Yip) can always be expressed
as a series of conditional distributions,

f(Yi1, Yi2, ..., Yip) = f(Yi1)f(Yi2|Yi1) · · · f(Yip|Yi1, ..., Yi,p−1).

This provides a complete representation of the joint distribution.

Note that when the conditional distributions satisfy the first order Markov
assumption, this reduces to

f(Yi1)f(Yi2|Yi1)f(Yi3|Yi2) · · · f(Yip|Yi,p−1) = f(Yi1)

p∏
j=2

f(Yij|Yi,j−1).

Thus, the joint distribution is the product of the marginal distribution at
time 1 and p− 1 conditional distributions, all of which have the same form.
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Since the marginal model at time 1 cannot be derived from the
conditional model, we maximize only the second part involving the
conditional distributions.

That is, statistical inference is based on the conditional likelihood.

For example, with the first order Markov model inference is based on

f(Yi2, ..., Yip|Yi1) =
p∏
j=2

f(Yij|Yi,j−1).

Conditional MLEs may be less efficient, but do not require additional
assumptions concerning the distribution of ‘initial responses’.

When maximizing the conditional likelihood, it can be shown that
estimation proceeds as in ordinary generalized linear models for
independent responses.

427



Thus, we can use existing statistical software for generalized linear models
by simply regressing Yij on an extended vector of covariates,

{Xij, f1(Hij), f2(Hij), ..., fs(Hij)}.

Note: When g(E[Yij|Hij]) is not a linear function of β and α then a
slightly modified algorithm is required.

Finally, note that the empirical or so-called robust variance has a
potential role in transitional models.

For example, if the conditional mean has been correctly specified but the
conditional variance has not, fitting the conditional model with empirical
variances will guard against such departures from the model assumptions.
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Example: Six Cities Study of Respiratory Illness in Children.

A non-randomized longitudinal study of the health effects of air pollution.

Subset of data from one of the participating cities: Steubenville, Ohio

Outcome variable: Binary indicator of respiratory infections in child.

Measurements on the children were taken annually at ages 7, 8, 9, and 10.
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Assume conditional probability of infection follows a logistic
autoregressive model,

logit(E[Yij|Hij]) = β0 + β1ageij + β2smokei + α1Yi,j−1

where ageij = child’s age - 9, and smokei = 1 if child’s mother smokes, 0
otherwise.

Preliminary analyses allowed for additional interactions between the
lagged response and covariates.

None of these interactions were found to be statistically significant.
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SAMPLE SAS CODE FOR FITTING
TRANSITIONAL MODELS

data trans;
set child;
y=y2;
age=-1;
lagy=y1;

output;
y=y3;
age=0;
lagy=y2;

output;
y=y4;
age=1;
lagy=y3;
output;

proc genmod data=trans;
model y=age smoke lagy / d=bin;

run;
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Transitional Model Parameter Estimates

Parameter Estimate SE Z

Intercept -2.478 0.117 -21.18
Age -0.243 0.090 -2.70
Smoke 0.296 0.155 1.91

Yi,j−1 2.211 0.187 11.82

The parameter exp(α1) is the ratio of odds of infection among those
children who did and did not have an infection on the previous occasion.

The estimate of exp(2.211) = 9.21 suggests strong time dependence.
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Interpretation of β2:

Given a child’s infection status at the previous occasion, the conditional
odds of infection among children of mothers who smoke is 1.34 (e0.296)
times that of children whose mothers do not smoke.

Note: Interpretation of β2 depends on the first order Markov assumption.

If a second order Markov chain model is assumed, where

logit(E[Yij|Hij]) = β0 + β1ageij + β2smokei + α1Yi,j−1 + α2Yi,j−2

the estimate of β2 is 0.174.

Note, however, that the interpretation of β2 has also changed.

Given a child’s infection status at the previous two occasions, the
conditional odds of infection among children of mothers who smoke is 1.20
(e0.174) times that of children whose mothers do not smoke.
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Caution: When we treat previous responses as explanatory variables,
inferences about the covariates can be quite sensitive to the
time-dependency model.

Hence, the sensitivity of the analysis to the time-dependency model
should be checked.

The conditional model can also be potentially misleading if a treatment or
exposure changes risk throughout the follow-up period, so that the
conditional risk, given previous health status, is altered somewhat less
strikingly.
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Contrasting Models for Longitudinal Data

In the first part of the course, we focused on methods for analyzing
longitudinal data where the dependent variable was continuous and the
vector of responses was assumed to have a multivariate normal
distribution.

We also focused on fitting a linear model to the repeated measurements.

For the remainder of the course we have considered a much wider class of
regression models.

These models can be thought of as extensions of the
generalized linear model to longitudinal data.

The main focus has been on discrete response data, e.g. count data or
binary responses.
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We have considered three main extensions of generalized linear models:

1. Marginal Models

2. Mixed Effects Models

3. Transitional Models

Recall that these three quite different analytic approaches arise from
somewhat different specifications of, or assumptions about, the joint
distribution,

f(Yi1, Yi2, ..., Yip).

Unlike linear models for continuous responses, with non-linear models for
discrete data different assumptions about the source of the correlation can
lead to regression coefficients with quite distinct interpretations.
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Marginal Models

The basic premise of marginal models is to make inferences about
population averages.

The term ‘marginal’ is used to emphasize that the mean response
modelled is conditional only on covariates and not on other responses (or
random effects).

In the marginal model, we model the regression of the response on
covariates and the covariance structure separately.

That is, the mean and within-subject correlation are modelled separately.
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Mixed Effects Models

The basic premise is that we assume that there is natural heterogeneity
across individuals in a subset of the regression parameters.

That is, a subset of the regression parameters (e.g. intercepts) are
assumed to vary across individuals according to some distribution.

Then, conditional on the random effects, it is assumed that the responses
for a single individual are independent observations from a distribution
belonging to the exponential family.

These models extend the conceptual approach of the linear mixed effects
model and are most useful when the scientific objective is to make
inferences about individuals rather than the population averages.

That is, the main focus is on the individual and the influence of covariates
on the individual.
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Transitional (Markov) Models

In transitional models the conditional distribution of each response is
expressed as an explicit function of the past responses (the ‘history’) and
covariates.

Therefore the correlation among the repeated responses can be thought of
as arising due to past values of the responses explicitly influencing the
present observation (i.e. the ‘present’ depends on the ‘past’).

In transitional models, the covariates and lagged responses are treated on
an equal footing.
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We can compare and contrast these three analytic approaches in a variety
of different ways:

1. Likelihood-based inference:

• traditional ML methods are (in principle) straightforward for the
mixed effects and transitional models
• there is no unified likelihood-based approach for marginal models,

partly due to the absence of a ‘convenient’ likelihood function for
discrete responses

2. Sensitivity to time-dependence assumption:

• in marginal models, β̂ is relatively robust
• in mixed effects models, β̂ is relatively insensitive to assumptions

concerning the distribution of the random effects
• in transitional models, β̂ is not robust since covariates and lagged

responses are treated symmetrically
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3. Interpretation of β: Consider β2 in the Six Cities example.

• marginal model: β2 describes the ratio of population odds.
‘...prevalence or odds of infection is 1.3 times higher among children
whose mothers smoke...’

• mixed effects model: β2 describes the ratio of a specific individual’s
odds.
‘...odds of infection is 1.5 times higher for a child whose mother
starts smoking...’

• transitional model: β2 describes the ratio of conditional odds.
‘...given the history of infections at the previous two occasions,
the odds of infection is 1.2 times higher among children whose
mothers smoke...’
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Consider the interpretation of β2 from the mixed effects model:

‘...odds of infection is 1.5 times higher for a child whose mother starts
smoking...’

However, because smoking is a between-subject covariate, there is no
information in the data that directly measures the effect a within-subject
change in smoking would have on the odds of infection.

So how is this numerical estimate calculated?

Answer: It’s a function of both the

• marginal (population-averaged) effect
(which is directly observable from the data)

• the distributional form assumed for the random effects, bi.

⇒ β for a between-subject covariate can be sensitive to the assumptions
for the random effects.
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Example: Random Intercept Logistic Regression Model

β̂MIXED ≈
[{

16(
√

(3))/(15π)
}2

σ2 + 1
]−1/2

β̂PA

Estimates of ‘maternal smoking effect’ using the Six Cities data.

Marginal Mixed Effect Transitional

β2 0.256 0.399 0.296† 0.174††

exp(β2) (1.30) (1.50) (1.34) (1.20)

† : Based on first order Markov model

†† : Based on second order Markov model
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Choice among models?

• should be guided by specific scientific question of interest:

• Marginal Model: Population-averaged effect

– Interest focuses on differences between sub-groups in the study
population

– Applicable for either type of covariate
(Both time-varying and time-invariant).

• Mixed Model: Within-subject effect

– Interest focuses on estimating intercepts or slopes for each subject
– Interest focuses on controlling for unmeasured subject characteristics.
– Best used when interest focuses on a time-varying covariate.

• Transitional Model: How does the “present” depend on the “past”?
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MULTILEVEL MODELS

Until today, this course has focused on the analysis of longitudinal data.

Mixed models can also be used to analyze multilevel data.

Longitudinal data are clustered. Individual subjects, or units, provide
multiple observations.

Multilevel data are also clustered.
Randomized trials study patients clustered within practices.
In studies of social determinants of health, we may study families
of individuals clustered by neighborhood within a community.

The first example is a two-level setting, patients within practices. The
second is a three-level setting, individuals within families within
neighborhoods.
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Multilevel Data

Multilevel data can arise from the study design or a natural hierarchy in
the target population, or sometimes both.

In developmental toxicity studies, mothers are dosed with the study
chemical and outcomes are measured in the offspring. Observations are
naturally clustered within litter.

In studies of clustering of disease within families, we measure the disease
status of each family member.

Other naturally occurring clusters include schools, households, hospital
wards, medical practices, and neighborhoods.

Multi-stage sampling design.
NHANES III chose a random sample of primary sampling units, a random
sample of areas within each PSU, a random sample of households in each
area, and a random individual within each household (four-level
sampling).
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Multilevel Linear Models

The dominant approach to analysis of multilevel data employs a type of
linear mixed effects model known as the hierarchical linear model.

The correlation induced by clustering is described by random effects at
each level of the hierarchy.

In a multilevel model, the response is obtained at the first level, but
covariates can be measured at any level.

For example, if we are studying BMI, we can measure individual diets,
family attitudes about food and purchasing habits, and community
attributes such as the density of fast-food restaurants.

We introduce the ideas with the two-level model, then move to the
three-level model to illustrate the general approach.
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Two-level Linear Models

Notation:

Let i index level 1 units and j index level 2 units (The subscripts are
ordered from the lowest to the highest level).

We assume n2 level 2 units in the sample. Each of these clusters
(j = 1, 2, · · · , n2) is composed of n1j level 1 units. (In a two-level study of
physician practices, we would study n2 practices, with n1j patients in the
jth practice.)

Let Yij denote the response for patient i in the jth practice.

Associated with each Yij is a 1× p (row) vector of covariates, Xij

Consider the following model for the mean:

E(Yij) = Xijβββ
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In a multi-center clinical trial comparing two treatments, we might
assume that:

E(Yij) = β1 + β2Trtij
where Trtij is an indicator variable for treatment group (or Trtj if
treatment is constant within practice).

The two-level hierarchical linear model assumes that the correlation
within practices can be described by a random effect.

Thus, we assume that
Yij = Xijβββ + bj + eij

Or, more generally,
Yij = Xijβββ + Zijbj + eij

with more than 1 random effect.
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Features of the Two-Level Linear Model

1. The model defines two sources of variation. The magnitudes of the
within- and between-cluster correlation determine the degree of
clustering.

2. For a given level 2 unit, the random effects are assumed constant across
level 1 units.

3. The conditional expection of Yij, given the identity of the level 2 group,
is

Xijβββ + Zijbj

4. Level 1 observations are assumed to be conditionally independent given
the random effects.

The two-level model is identical to the linear mixed model with intraclass
correlation structure for repeated measurements.
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The Three-Level Linear Model

Now consider a three-level longitudinal clinical trial in which
1) physician practices are randomized to treatment,
2) patients are nested within practices, and
3) patients are measured at baseline and at three occasions after

treatment.

Level 1 is occasions, level 2 is patients, and level 3 is practice. Denote the
response at the ith observation of the jth patient in the kth clinic by

Yijk

Covariates can be measured at any of three levels. However, we now
introduce random effects to represent clustering at both levels 2 and 3.

The general three-level linear model is written as follows:

Yijk = Xijkβββ + Z(3)
ijkb

(3)
k + Z(2)

ijkb
(2)
jk + eijk
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Example: Three-Level Model for the
Multi-level Longitudinal Clinical Trial

Let
tijk denote the time from baseline at which Yijk is obtained.

Also, let Trtij denote the treatment given to the jth patient at the ith

occasion.
The treatment may be constant over occasions for a given patient.

Then a hierarchical three-level model for the response is given by

Yijk = β1 + β2tijk + β3(Trtij × tijk) + b(3)
k + b(2)

jk + eijk

This model assumes a common intercept and separate linear trends over
time in the two treatment groups.
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If
Var(b(3)

k ) = G(3),Var(b(2)
jk ) = G(2), and Var(eijk) = σ2,

and all random effects are assumed to be independent, then

Var(Yijk) = G(2) + G(3) + σ2

and the covariance between two observations from the same patient is

G(2) + G(3)

Thus, the observations for a given patient have an intraclass correlation
structure, with

Corr(Yijk, Yijl) =
G(2) + G(3)

G(2) + G(3) + σ2
.

Because this is a linear mixed model,

E(Yijk) = β1 + β2tijk + β3(Trtij × tijk)
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Estimation

For the three-level linear model, the standard distributional assumptions
are that:

b(3)
k ∼ N(0,G(3)),b(2)

jk ∼ N(0,G(2)), and eijk ∼ N(0, σ2)

Given these assumptions, estimation of the model parameters is relatively
straightforward. The GLS estimate of β is given by

β̂ =
{ n3∑
k=1

(X′kV
−1
k Xk)

}−1
n3∑
k=1

(X′kV
−1
k Yk)

where Yk is a column vector of length
∑n2k
j=1 n1jk, the number of

observations in the kth cluster. Xk is the corresponding matrix of
covariates, and Vk is the covariance matrix of Yk.
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Estimation (Continued)

As before, we use REML (or ML) to obtain estimates of G(3), G(2), and
σ2.

Once these estimates are obtained, we can estimate the covariance
matrices, Vk, and substitute those estimates into the expression for the
GLS estimator.

This estimation procedure is available in SAS PROC MIXED.

It is also available in MLwiN and HLM, two stand-alone programs
developed for multi-level modeling.

455



Example: Developmental Toxicity of Ethylene Glycol

In a classic developmental study, ethylene glycol at doses of 0, 750, 1,500,
or 3,000 mg/kg/day was administered to 94 pregnant mice. The crude
results were as follows:

Dose Weight (gm)
(mg/kg) Sqrt(Dose/750) Dams Fetuses Mean St. Dev.

0 0 25 297 0.97 0.10
750 1 24 276 0.90 0.10

1500 1.4 22 229 0.76 0.11
3000 2 23 226 0.70 0.12

Based on experience and these data, the investigators modeled the
response as linear in sqrt(dose).

456



Because the observations are clustered within dam, the analysis must take
account of clustering. If it does not, the sample size for comparisons
between doses will be exaggerated.

To fit a two-level model that is linear in sqrt(dose), use the following SAS
code:

data toxicity;
infile ’c:\bio226\datasets\ethyleneglycol.txt’;
input id dose weight mal;
newdose=sqrt(dose/750);
run;

proc mixed data=toxicity;
class id;
model weight = newdose / solution chisq;
random intercept / subject=id g;

run;
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Results:

Variable Estimate SE Z

Fixed Effects
Intercept 0.98 0.02 61.3
Newdose -0.13 0.01 -10.9

Random Effects
Level 2 Variance
( σ2

2 × 100) 0.73 0.12 6.1
Level 1 Variance
( σ2

1 × 100) 0.56 0.03 21.6
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The estimate of σ2
2 indicates significant clustering of weights within litter.

The estimated within-litter correlation is

ρ̂ = σ̂2
2/(σ̂

2
2 + σ̂2

1)

= 0.73/(0.73 + 0.56)

= 0.57

The estimated decrease in weight, comparing the highest dose to 0 dose, is
0.27 (0.22, 0.33).

The model-based and empirical (sandwich) standard errors are very
similar (not shown), indicating that the random effects structure is
adequate.

It is also easy to test for linearity on the square root scale, though we have
data at only four doses.
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Example: The Television, School, and Family
Smoking Prevention and Cessation Program

A randomized study with a 2 by 2 factorial design:
Factor 1: A school-based social-resistance curriculum (CC)
Factor 2: A television-based prevention program (TV)

We report results for 1,600 seventh graders from 135 classes in 28 schools
in Los Angeles

The response variable, the tobacco and health knowledge scale (THKS),
was administered before and after the intervention.

We consider a linear model for post-intervention THKS, with baseline
THKS as a covariate.
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Descriptive Statistics

Pre-THKS THKS
CC TV n Mean Std Dev Mean Std Dev

No No 421 2.15 1.18 2.34 1.09

No Yes 380 2.05 1.29 2.82 1.09

Yes No 416 2.09 1.29 2.48 1.14

Yes Yes 383 1.98 1.29 2.74 1.07

The mean value of Pre-THKS does not differ significantly among
treatment groups.

461



The Model

Yijk = β1 + β2Pre-THKS + β3CC + β4TV + β5CC×TV + b
(3)
k + b

(2)
jk + eijk

where we list fixed and random effects on separate lines for clarity.

In a slightly modified notation, assume

eijk ∼ N(0, σ2
1)

b
(2)
jk ∼ N(0, σ2

2)

b
(3)
k ∼ N(0, σ2

3)

This is the standard hierarchical (or multi-level) linear model with
random effects at each level to introduce correlation within clusters, The
fixed effects model has both main effects and interactions for CC and TV.
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SAS Code

data tvandcc;
infile ’c:\bio226\datasets\tv.txt’;
input sid cid cc tv baseline THKS;
level=cc+2*tv;

run;
proc mixed data=tvandcc covtest;

class sid cid;
model y2 = y1 cc tv cctv / s;
random intercept / subject=sid g ;
random intercept / subject=cid g ;

run;
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Fixed and Random Effects Estimates

Variable Estimate Standard Error Z

Fixed Effects
Intercept 1.70 0.13 13.6
Pre-THKS 0.31 0.03 11.8
CC 0.64 0.16 4.0
TV 0.18 0.16 1.2
CC × TV -0.33 0.22 -1.5

Random Effects
Level 3 Variance 0.04 0.03 1.5
( σ2

3)
Level 2 Variance 0.07 0.03 2.3
( σ2

2)
Level 1 Variance 1.60 0.06 27.1
( σ2

1)
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Comments on the Estimates of Fixed Effects

Pre-THKS is an important predictor of knowledge after the intervention.

CC had a clear effect on knowledge, but TV did not.

Comments on the Estimates of Random Effects

There is relatively little clustering as measured by the small values for the
level 2 and 3 variances as compared to the level 1 variance.

The variability among classrooms is twice as large as the variability
among schools.

The correlation among children in the same classroom is

(0.04 + 0.07)/(0.04 + 0.07 + 1.60) = 0.06
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The Effect of Ignoring Clustering

Because the correlations are small, we might conclude that the clustering
is unimportant. But consider an analysis that treats the observations as
independent, ignoring clustering.

Variable Estimate Standard Error Z

Intercept 1.66 0.08 19.7
Pre-THKS 0.33 0.03 12.6
CC 0.64 0.09 7.0
TV 0.20 0.09 2.2
CC × TV -0.32 0.13 -2.5

The estimates change little but the model-based standard errors are too
small, leading to erroneous conclusions.

If we assume independence, we are implicitly assuming a larger sample
size for comparisons between classrooms.
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Generalizations

The multi-level model can be generalized to an arbitrary number of levels.

Generalized Linear Mixed Effects models have also been developed for the
analysis of binary outcomes and counts in the multi-level setting. (See
FLW, Chapter 17)

Cautionary Remarks

Multilevel modeling can be difficult:

- A covariate can operate at different levels

- It is not always clear how to combine covariates within a single model

- Though hierarchical linear models with random effects are appealing,
the extension to generalized linear models raises difficult problems of
interpretation.

- As discussed earlier, marginal models and mixed-effects models can
give quite different results in the non-linear setting
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Summary

Despite these limitations, multi-level models are now widely used.

In both designed experiments and studies of the effects of family and
community factors that influence health and well-being, multi-level
models provide a usually effective approach to data analysis that accounts
for correlations induced by clustering.

Multi-level models are, in one sense, no different than longitudinal models.
Unlike logistic regression and survival analysis, where the concept of
regression analysis can be applied quite robustly and with few choices,
longitudinal and multi-level analysis require more careful thought about
the choice and meaning of models.

This is both their challenge and their reward.
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APPENDIX

Some comments on denominator df
in PROC MIXED

PROC MIXED reports both t and F statistics for testing hypotheses
concerning the fixed effects.

The t statistics are Wald test statistics (estimate/s.e.). In large samples,
these have a standard normal distribution.

The F test for a class variable, reported in PROC MIXED, is based on a
multivariate Wald-type test statistic divided by its numerator df. In large
samples, the multivariate Wald statistic has a chi-squared distribution
with numerator df.

To obtain p-values based on the chi-squared distribution, simply add the
option CHISQ to the MODEL statement.

(Recall: If Z has a N(0, 1) distribution; Z2 has a χ2
(1) distribution).
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Review: Multivariate Wald Test Statistics

To test a null hypothesis that involves more than one parameter, a
multivariate Wald-type test statistic can be constructed.

To test H0 : β = 0, where β is a vector of k regression parameters, the
following statistic can be computed

W = β̂
′
Cov(β̂)−1β̂.

Under H0 : β = 0, W has, approximately, a chi-squared distribution with
k df.
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PROC MIXED constructs t and F tests for the fixed effects using
approximate denominator df.

Except for certain special cases, there is no general theory to justify the
use of the t and F distributions for tests of the fixed effects. Because of
this, there is also no obvious way to obtain the required denominator
degrees of freedom for the t and F tests.

PROC MIXED provides 5 options for computing denominator degrees of
freedom (see pages 2117-2119 of the manual for a detailed description):

1. Residual method (DDFM=RESIDUAL)

2. Between-Within method (DDFM=BETWITHIN or DDFM=BW)

3. Containment method (DDFM=CONTAIN)

4. Satterthwaite’s approximation (DDFM=SATTERTH)

5. Kenward and Roger approximation (DDFM=KENWARDROGER)
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Of the 5 methods, (1) is by far the least appealing; (2) and (3) are the
default methods depending on whether the model uses a REPEATED or
RANDOM statement respectively; and (4) and (5) are computationally
intensive methods.

Caveat: Reliance on the default methods can often lead to different
denominator df for two identical models that have been formalized in
somewhat different ways.

For example, the denominator df in a model with a compound symmetry
covariance matrix will differ depending on whether the REPEATED
statement (with TYPE=CS) or the RANDOM statement (with
RANDOM INTERCEPT) has been used.
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Example 1: Exercise Therapy Study (Compound Symmetry:
REPEATED/TYPE=CS)

Fit Statistics

Res Log Likelihood -330.2
Akaike’s Information Criterion -332.2
-2 Res Log Likelihood 660.4

Tests of Fixed Effects

Source NDF DDF ChiSq F Pr > ChiSq Pr > F

TRT 1 35 1.28 1.28 0.2577 0.2654
TIME 1 134 48.80 48.80 0.0001 0.0001
TIME*TRT 1 134 0.40 0.40 0.5263 0.5274
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Example 2: Exercise Therapy Study (Compound Symmetry: RANDOM
INTERCEPT)

Fit Statistics

Res Log Likelihood -330.2
Akaike’s Information Criterion -332.2
-2 Res Log Likelihood 660.4

Tests of Fixed Effects

Source NDF DDF ChiSq F Pr > ChiSq Pr > F

TRT 1 134 1.28 1.28 0.2577 0.2598
TIME 1 134 48.80 48.80 0.0001 0.0001
TIME*TRT 1 134 0.40 0.40 0.5263 0.5274
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Summary

PROC MIXED constructs t and F tests for the fixed effects using
approximate denominator df.

There is no general theory to justify the use of the t and F distributions
for tests of the fixed effects.

In general, when the sample size is moderately large (say, greater than
100), the denominator df computed using any of the 5 methods will be
sufficiently large that the p-values obtained by comparing the Wald
statistics to t and F distributions will not differ discernibly from the
p-values obtained from the corresponding standard normal and
chi-squared distributions.
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