• Exposure to ambient particulate matter (PM) air pollution has been associated with increased blood pressure (BP) in some but not all studies.

• We investigated the association between short-term average levels of PM$_{2.5}$ and black carbon (BC) and BP in the Framingham Heart Study (FHS) Offspring cohort, hypothesizing that higher short-term exposure would be associated with higher BP.

METHODS

Study Design
- Repeated measures prospective cohort study

Study Population
- Framingham Heart Study Offspring Cohort at Exams 7 (9/1998-10/2001, n=1,966) and 8 (03/2005-1/2008, n=1,604)
- Excluded subjects living more than 40 km from pollution monitoring site

Pollution Data
- Hourly measures PM$_{2.5}$ and BC were obtained from the Harvard SuperSite in Boston, Massachusetts and averaged to create daily exposure values

Blood Pressure Data
- Systolic (SBP) and diastolic (DBP) BP were measured by two physicians and the results averaged at each FHS exam visit
- Extensive clinical and demographic information was obtained at the FHS visits

Statistical Analysis
- Separate mixed effects models were constructed for 1, 2, 3, 5, 7, 14, 21, and 28-day moving averages (MAs) of the pollutant concentrations and BP outcomes
 - Mixed effects regression controls for between-person differences by including random subject-specific intercepts and thus isolating the within-person estimates of association
 - Primary analyses: PM$_{2.5}$ and BC concentrations were modeled as continuous linear functions and adjusted for age, sex, body mass index, use of lipid-lowering and antihypertensive medications, diabetes, prevalent cardiovascular disease, smoking, season, apparent temperature, and date
 - We controlled for time by putting in a term for date and date squared.
 - We modeled seasonal trends as sin(2*π*day of study/365.24) + cos(2*π*day of study/365.24)
 - As apparent temperature is highly correlated with the seasonal terms, we first regressed the apparent temperature against the cosine/sine terms and then included the residuals and squared residuals in our model.
 - Secondary analyses: We looked specifically within vulnerable groups including subjects with diabetes and women.
 - All results are presented as a change in blood pressure associated with a 1 µg/m3 increase in pollutant concentration, with 95% confidence intervals (CI)

RESULTS

Table 1: Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Exam 7 (n=1,966)</th>
<th>Exam 8 (n=1,607)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y (SD)</td>
<td>61.5 (9.5)</td>
<td>67.5 (9.3)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>1060 (54)</td>
<td>887 (55)</td>
</tr>
<tr>
<td>BMI, kg/m2 (SD)</td>
<td>28.3 (5.3)</td>
<td>28.5 (5.4)</td>
</tr>
<tr>
<td>SBP, mmHg (SD)</td>
<td>127.5 (19.0)</td>
<td>129.5 (17.8)</td>
</tr>
<tr>
<td>DBP, mmHg (SD)</td>
<td>73.8 (9.8)</td>
<td>73.2 (10.1)</td>
</tr>
<tr>
<td>Use of Lipid-Lowering Medications (%)</td>
<td>444 (23)</td>
<td>809 (50)</td>
</tr>
<tr>
<td>Use of Anti-Hypertensive Medications (%)</td>
<td>718 (37)</td>
<td>958 (60)</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>215 (11)</td>
<td>242 (16)</td>
</tr>
<tr>
<td>Cardiovascular Disease (%)</td>
<td>280 (14)</td>
<td>297 (19)</td>
</tr>
<tr>
<td>Current Smoking (%)</td>
<td>278 (14)</td>
<td>148 (9)</td>
</tr>
</tbody>
</table>

Figure 1: Association between 1 µg/m3 increase in Pollutants and BPs At Different MAs

CONCLUSIONS

• In this preliminary analysis of a cohort of largely suburban community-dwelling middle-aged-to-elderly white American adults, there was no apparent association between short-term exposure to PM$_{2.5}$ or BC and BP.
• Different methods for controlling for seasonality and secular trends did not alter the results.
• Results did not differ materially in subgroup analyses of diabetics and women.
• There may truly be no relationship between blood pressure and short-term exposure to air pollution, or there may be residual confounding.
• Future analyses will incorporate additional FHS exams and alternative exposure assessments based on satellite data and land-use regression, as well as assess the association between chronic exposure to traffic related pollutants and BP.
• Given the overall deleterious effects of air pollution on cardiovascular health, these results should not be used to support relaxation of current air quality standards.

Acknowledgements

Supported by National Institute of Health grants P01-ES009825 and P30-ES00002, and US Environmental Protection Agency grants R823416 and RD34798601.

From the Framingham Heart Study of the National Heart, Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. This work was supported by the National Heart, Lung and Blood Institute’s Framingham Heart Study (Contract No.N01-HC-25195).

JIR was additionally supported by the Harvard Medical School Scholars in Medicine Office.